CARNEGIE MELLON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE 15-445/645 – DATABASE SYSTEMS (FALL 2017) PROF. ANDY PAVLO

Homework 2 (by Prashasthi Prabhakar) – Solutions Due: Wednesday Sep 20, 2017 @ 11:59pm

IMPORTANT:

- Upload a PDF of your answers to Gradescope by 11:59pm on Wednesday Sep 20, 2017.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- Typeset all your answers.

For your information:

- Graded out of 100 points; 4 questions total
- Rough time estimate: \approx 1-4 hours (0.5-1 hours for each question)

Revision : 2017/10/22 09:40

Question	Points	Score
Functional Dependencies I	15	
Functional Dependencies II	32	
Decompositions	20	
Normal Forms	33	
Total:	100	

Consider the following legal instance of a relational schema S with attributes XYZ:

S	Χ	Y	Ζ
	m	20	Т
	m	10	F
	0	30	Т
	n	30	Т
	0	20	Т

Table 1: Legal instance of schema S for question 2.1

(a) Which of the following dependencies are *violated* by the instances of S in Table 1?

i.	[2 points]	■ Yes	\Box No : $X \to Y$ is violated.
ii.	[2 points]	■ Yes	\Box No : $Z \to X$ is violated.
iii.	[2 points]	□ Yes	No : $Y \to Z$ is violated.
iv.	[2 points]	□ Yes	No : $XY \rightarrow Z$ is violated.
v.	[2 points]	■ Yes	\Box No : $YZ \rightarrow X$ is violated.

- vi. [2 points] \blacksquare Yes \Box No : $XZ \rightarrow Y$ is violated.
- (b) **[3 points]** By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S? Why?
 - 🗆 Yes 🔳 No

Solution: No, because we can only see an instance.

Homework 2

For the next set of questions consider the relational schema $\mathcal{R} = \{P, Q, R, S, T, U, V, W\}$ and the set of functional dependencies FD:

$$Q \rightarrow U$$
 (1)

$$U \rightarrow V$$
 (2)

$$PQ \rightarrow WST$$
 (3)

$$SU \rightarrow TR$$
 (4)

$$VT \rightarrow RW$$
 (5)

$$R \rightarrow W$$
 (6)

- (a) **[8 points]** Which of the following is a minimum cover of the FD? Mark all that qualify; if none, mark accordingly, and give your *own*. answer.
 - i. The given FDs (Eq 1-6), is a minimum cover already.
 - ii. $\{Q \to U, U \to V, PQ \to S, SU \to T, SU \to R, VT \to R, VT \to W, R \to W\}$
 - iii. $\{Q \to U, U \to V, PQ \to S, SU \to T, PQ \to W, VT \to R, PQ \to T, R \to W\}$
 - iv. $\{Q \to U, U \to V, PQ \to S, SU \to T, VT \to R, R \to W\}$
 - v. $\{Q \to U, U \to V, PQ \to S, SU \to T, SU \to R, VT \to R, PQ \to T, R \to W\}$
 - vi. none of the above the cover is _____

Solution: iv

- (b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(6))?
 - i. [3 points] \blacksquare Yes \Box No : $Q \rightarrow V$
 - ii. [3 points] \Box Yes \blacksquare No : $QU \rightarrow R$
 - iii. [3 points] \blacksquare Yes \Box No : $SQ \to T$
 - iv. [3 points] \blacksquare Yes \Box No : $SQ \rightarrow W$
 - v. [3 points] \blacksquare Yes \Box No : $PQ \rightarrow R$
 - vi. [3 points] \Box Yes \blacksquare No : $VT \rightarrow Q$
- (c) [3 points] True or False: The attribute closure $\{Q\}^+$ is $\{Q, U, V\}$.
 - True □ False
- (d) [3 points] True or False: The attribute closure $\{PQ\}^+$ is $\{P, Q, W, S, T\}$.
 - □ True False

Grading info: It is $\{P, Q, R, S, T, U, V, W\}$.

For this set of questions, consider the relation with attributes, $\mathcal{X} = \{A, B, C, D, E, F\}$, Let the following functional dependencies FD be defined over the relation \mathcal{X} :

$$A \to B$$
$$B \to CD$$
$$E \to F$$

(a) [2 points] Provide the attribute closure of $\{AB\}$.

Solution: ${AB}^+ = {ABCD}$

- (b) Consider the decomposition AB, BCD, EF. Mark 'True' or 'False':
 - i. [3 points] \Box True **False** : It is lossless
 - ii. [3 points] True □ False : It is dependency-preserving
- (c) Consider the decomposition AB, BCDF, EF. Mark 'True' or 'False':
 - i. [3 points] □ True False : It is lossless
 - ii. [3 points] True □ False : It is dependency-preserving
- (d) Consider the decomposition *ABCEF*, *EBD*. Mark 'True' or 'False':
 - i. [3 points] True □ False : It is lossless
 - ii. [3 points] True □ False : It is dependency-preserving

Question 4: Normal Forms......[33 points] GRADED BY: Leon

Consider the relation with attributes, $\mathcal{E} = \{P, Q, R, S\}$. Suppose that the following functional dependencies hold:

- $PQ \rightarrow R$ (7)
- $PQ \rightarrow S$ (8)
 - $R \rightarrow P$ (9)

$$S \rightarrow Q$$
 (10)

(a) [6 points] List *all* the candidate key(s) for \mathcal{E} .

Solution: $\{PQ\}, \{QR\}, \{RS\}, \{PS\}$

Grading info: -2: for each missing candidate key

- (b) [2 points] Is the relation \mathcal{E} in BCNF? \Box Yes \blacksquare No
- (c) From the list below, select all applicable choices to justify whether \mathcal{E} is (or is not) in BCNF.

Note: when we refer to the *main requirement* for BCNF, we mean: *every determinant is a super key*.

- i. [1 point] \Box True **False** : All FD's satisfy the main requirement.
- ii. [1 point] \Box True **False** : FD (7) violates the main requirement.
- iii. [1 point] \Box True **False** : FD (8) violates the main requirement.
- iv. [1 point] True \Box False : FD (9) violates the main requirement.
- v. [1 point] True \Box False : FD (10) violates the main requirement.
- (d) [2 points] Is the relation \mathcal{E} in 3NF? \blacksquare Yes \Box No
- (e) From the list below, select all applicable choices to justify whether \mathcal{E} is (or is not) in 3NF. **Note:** when we refer to the *secondary requirement* for 3NF, we mean: *for every FD* $X \to A$, A *is part of a candidate key*.
 - i. [1 point] True \Box False : All FD's satisfy the secondary requirement.
 - ii. [1 point] \Box True **False** : FD (7) violates the secondary requirement.

 - iv. [1 point] \Box True **False** : FD (9) violates the secondary requirement.
 - v. [1 point] \Box True **False** : FD (10) violates the secondary requirement.
- (f) [5 points] Give a 3NF decomposition of \mathcal{E} that is lossless, dependency preserving, and has as few tables as possible.

Solution: $\mathcal{E}_{1,1}=(P,Q,R,S)$

Grading info: -1: 3NF decomposition with 2 tables; -3: 3NF decomposition more than with 2 tables; -4: 3NF decomposition with more than 5 tables

(g) [8 points] Give a BCNF decomposition of \mathcal{E} that is lossless, and has as few tables as possible.

Solution: $\mathcal{E}_{1,1}=(P,R), \mathcal{E}_{1,2}=(Q,S), \mathcal{E}_{1,3}=(R,S)$

Grading info: -5: BCNF decomposition with more than 3 tables