
Lecture 03: Advanced SQL
15-445/645 Database Systems (Fall 2017)

Carnegie Mellon University
Prof. Andy Pavlo

Relational Languages
• User only needs to specify what they want (Declarative language i.e. SQL)

• DBMS decides how to compute the answer

• Query optimizer figures out the best plan to get the answer

• Data manipulation language (DML): Inserts, updates, deletes etc

• Data definition language (DDL): How the database looks (i.e. schema)

• SQL is based on bags (has duplicates) not sets (no duplicates)

History
• Edgar Codd published major paper on relational models

• SQL : Structured Query Language

• Originally “SEQUEL” from IBM

• IBM was the biggest party in Databases, so SQL became the standard

• SQL-92 is the basic standard that needs to be supported

• Each vendor follows the standard to a certain degree

1

http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/
https://en.wikipedia.org/wiki/Edgar_F._Codd

Lecture 03 15-445/645 Database Systems Advanced SQL

Example database used for lecture

Aggregates
AVG, MIN, MAX, SUM, COUNT

• Takes a bag of tuples => does computation => produces result

• Can only be used in SELECT output list

• “Get # of students with a “@cs” login (all these queries are equivalent)

SELECT COUNT(*) FROM student WHERE login LIKE '%@cs'

SELECT COUNT(login) FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1) FROM student WHERE login LIKE '%@cs'

• Supports multiple aggregates

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs'

• Supports distinct: “COUNT(DISTINCT login)”

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs'
COUNT(DISTINCT login)

• Output of other columns outside of an aggregate is undefined (e.cid is undef below)

2

Lecture 03 15-445/645 Database Systems Advanced SQL

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

• Thus, other columns outside aggregate must be aggregated or be group byd

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

• Having: filters output results after aggregation, Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

String Operations

• Strings are case sensitive and single quotes only with some exceptions

– MySQL: Case insensitive and Single/double quotes

– SQLite: Single/double quotes

• LIKE is used for string matching

– ”%” matches any substrings (including substring)

– ” ” matches any one character

• ”||” used to concatenate two or more strings together

Output redirection
• For when you want to store query results into another table and run followup queries

SELECT DISTINCT cid INTO CourseIds FROM enrolled

• Insert tuples from query into another table

– Inner SELECT must generate same columns as target table

INSERT INTO CourseIds
(SELECT DISTINCT cid FROM enrolled);

3

Lecture 03 15-445/645 Database Systems Advanced SQL

Output control
• ORDER BY used to order tuples based on column

ORDER BY <column*> [ASC|DESC]

• Multiple ORDER BY’s can be used to break ties

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

• LIMIT used to limit number of result tuples

LIMIT <count> [offset]

• Offset can be used to return a range

Nested Queries
• Often difficult to optimize

• Inner queries can appear (almost) anywhere in query

SELECT name FROM student
WHERE sid IN (

SELECT sid FROM enrolled
);

• Get names of students in 445

SELECT name FROM student
WHERE sid IN (

SELECT sid FROM enrolled
WHERE cid = "15-445"

);

– sid has different scope depending on query

• ALL: Must satisfy expression for all rows in subquery

• ANY: Must satisfy expression for atleast one row in subquery

• IN: Equivalent to =ANY()

• EXISTS: Atleast one row is returned

• Scope of outer query is included in inner query (i.e. inner query can access attributes from
outer query)

– Not the other way around

4

Lecture 03 15-445/645 Database Systems Advanced SQL

Window Functions
• Performs calculation across set of tuples

• Allows you to group calculation into windows
SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

• Placing ORDER BY within OVER() makes result deterministic ordering of results even if database
changes internally

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid

• RANK is done after you order, ROW NUMBER before you order

Common Table Expressions (CTEs)
• Alternative to windows or nested queries

• Can create a temporary table for just one query
WITH cteName AS (

SELECT 1
)
SELECT * FROM cteName

• You can bind output columns to names before the AS keyboard
WITH cteName (col1, col2) AS (

SELECT 1, 2
)
SELECT col1 + col2 FROM cteName

• Allows for recursive CTE

– Base case + UNION ALL + recursive use of CTE

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION ALL
(SELECT counter + 1 FROM cteSource
WHERE counter < 10)

)
SELECT * FROM cteSource

Conclusion
• SQL is not a dead language

• Strive to compute answers in one SQL query

5

	Relational Languages
	History
	Aggregates
	String Operations
	Output redirection
	Output control
	Nested Queries
	Window Functions
	Common Table Expressions (CTEs)
	Conclusion

