
Lecture 05: Normal Forms
15-445/645 Database Systems (Fall 2017)

Carnegie Mellon University
Prof. Andy Pavlo

Normal Forms
• Now that we know how to derive FDs, we can:

1. Search for “bad” FDs

2. If they exist, then decompose them into two tables, repeat for sub-tables

3. When done, the database schema is normalized

• A normal form is a characterization of a decomposition in terms of the properties that satisfied when
putting the relations back together

• Universal relation: The joining of all tables

• Three properties:

1. Lossless Joins: Information is not lost or bad information is not created when joining

2. Dependency Preservation: FDs are not split across relations

3. Redundancy avoidance: No repeated attributes in tuples

• History

– Ted Codd introduced the concept of normalization and the first normal form

– Codd Went on to define second and third normal form

– Codd and Raymond Boyce later defined Boyce-Codd normal form

• The ith normal form is more restrictive than the (i-1)th normal form

• Most common/important ones are the 3rd or Boyce-Codd normal Form

Types of Normal Forms
1. 1st normal form (1NF): All tables are flat

• All types must be atomic

• No repeating groups

2. 2nd Normal form (2NF): ”Good enough”

• Must be in first normal form

• Any non-key attributes fully depend on the candidate key

1

http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/


Lecture 05 15-445/645 Database Systems Normal Forms

3. 3rd Normal form (3NF): Most common

• Always preserves dependencies (unlike BCNF) but may have some anomalies

4. Boyce-Codd Normal form (BCNF): Most common

• No redundancies and no lossless join

• For any FD, if any left hand side attributes are not a super key, the relations are not in BCNF

• Some BCNF decompositions may lose dependencies when decomposed relations are joined
back together

5. 4th and 5th Normal Forms: See textbooks

6. 6th Normal Form: Most (normal) people never need this

NoSQL
• The normal forms is usually not how people design databases

• Instead, people usually think in terms of object-oriented programming

• Key tenants of the NoSQL movements

1. Prior to early 2000s, few people needed high-performance DBMS. In modern day speed is very
important

2. Joins are slow, so we will denormalize tables

3. Transactions are slow

Conclusion
• You should know about normal forms, they exist

• There is no magic formula for determining the right amount of normalization for an application

2


	Normal Forms
	Types of Normal Forms
	NoSQL
	Conclusion

