
Lecture 08: Hash Tables
15-445/645 Database Systems (Fall 2017)

Carnegie Mellon University
Prof. Andy Pavlo

Data Structures
• Can be used for internal meta-data about different components.

• Can be used as the base storage for tuples in the database

• Can be used as a temporary data structure to execute different relational operators in a query plan

• Lastly, we can use these data structures as indexes to speed up query processing

• Design Decisions

1. Data organization: How we layout memory and what information to store inside the data struc-
ture

2. Concurrency: How to enable multiple threads to access the data structure without causing prob-
lems

Hash Table

• A hash table implements an associative array abstract data type that maps keys to values

• It uses a hash function to compute an index into an array of buckets or slots

• Static hash Table

– Giant array with one slot for every element. Mod the key by number of elements to find the
offset in the array

– For variable length elements, array holds pointers to elements

– Problematic assumptions

1. You know the number of elements ahead of time
2. Each key is unique
3. Perfect hash function (if key1 != key2 then hash(key1) != hash(key2))

• Chained, open addressing, and cuckoo hash tables assume knowing the number of elements you
want to store ahead of time

• You typically don’t want to use a hash table for a table index

1

http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/


Lecture 08 15-445/645 Database Systems Hash Tables

Chained Hashing
• Maintain a linked list of buckets for each slot in the hash table

• Resolves collisions by placing elements with same hash key into the same bucket

• If bucket is full, add another bucket to list

• Downside: the hash table can grow infinitely because you keep adding new buckets

• To handle concurrency, you only need to take a latch on each bucket

• Approaches for non-unique keys

1. Separate linked list: stores values in separate storage area

2. Store in bucket: Store duplicate keys in the same buckets (store values with their keys)

Open Addressing Hashing
• Single giant table of slots

• Resolve collisions by linearly searching for the next free slot in the table

• To see if value is present, go to offset using hash, and scan for the key

• To reduce the number of wasteful comparisons, it is important to avoid collisions of × hashed key.
This requires hash table with 2 the number of slots as the number of expected elements

Cuckoo Hashing
• Maintain multiple has tables with different hash functions

• On insert, check every table and pick anyone that has a free slot

• If no table has free slot, evict element from one of them, and rehash it to find a new location

• If we find a cycle, then we can rebuild the entire hash tables with new hash functions

Extendible Hashing
• Chained-hashing approach with buckets.

• Instead of letting the linked list of buckets grow indefinitely, we’re going to split them incrementally

• When a bucket is full, we split the bucket and reshuffle its elements

• Uses global and local depths to determine buckets

• Hash table doubles in size to allow for more buckets

2



Lecture 08 15-445/645 Database Systems Hash Tables

Linear Hashing
• Maintain a pointer that tracks the next bucket to split

• Overflow criterion is left up to the implementation

• When any bucket overflows, split the bucket at the pointer location by adding a new slot entry, and
create a new hash function

• If hash function maps to slot that has previously been pointed to by pointer, apply the new hash
function

• When pointer reaches last slot, delete original hash function and replace it with new hash function

Hash Functions
• We don’t need a cryptographic hash function because we don’t need to get back key from hash

• We only care about speed and collision rate

3


