Lecture 08: Hash Tables

15-445/645 Database Systems (Fall 2017)
Carnegie Mellon University
Prof. Andy Pavlo

Data Structures

* Can be used for internal meta-data about different components.

* Can be used as the base storage for tuples in the database

* Can be used as a temporary data structure to execute different relational operators in a query plan
* Lastly, we can use these data structures as indexes to speed up query processing

* Design Decisions

1. Data organization: How we layout memory and what information to store inside the data struc-
ture

2. Concurrency: How to enable multiple threads to access the data structure without causing prob-
lems

Hash Table

* A hash table implements an associative array abstract data type that maps keys to values
* It uses a hash function to compute an index into an array of buckets or slots
» Static hash Table
— Giant array with one slot for every element. Mod the key by number of elements to find the
offset in the array
— For variable length elements, array holds pointers to elements

— Problematic assumptions

1. You know the number of elements ahead of time
2. Each key is unique
3. Perfect hash function (if key1 != key?2 then hash(key1) != hash(key?2))

¢ Chained, open addressing, and cuckoo hash tables assume knowing the number of elements you
want to store ahead of time

* You typically don’t want to use a hash table for a table index


http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/

Lecture 08 15-445/645 Database Systems Hash Tables

Chained Hashing

e Maintain a linked list of buckets for each slot in the hash table

* Resolves collisions by placing elements with same hash key into the same bucket

If bucket is full, add another bucket to list

* Downside: the hash table can grow infinitely because you keep adding new buckets
* To handle concurrency, you only need to take a latch on each bucket

* Approaches for non-unique keys

1. Separate linked list: stores values in separate storage area

2. Store in bucket: Store duplicate keys in the same buckets (store values with their keys)

Open Addressing Hashing

* Single giant table of slots
* Resolve collisions by linearly searching for the next free slot in the table
* To see if value is present, go to offset using hash, and scan for the key

* To reduce the number of wasteful comparisons, it is important to avoid collisions of x hashed key.
This requires hash table with 2 the number of slots as the number of expected elements

Cuckoo Hashing

e Maintain multiple has tables with different hash functions
* On insert, check every table and pick anyone that has a free slot
* If no table has free slot, evict element from one of them, and rehash it to find a new location

* If we find a cycle, then we can rebuild the entire hash tables with new hash functions

Extendible Hashing

* Chained-hashing approach with buckets.

* Instead of letting the linked list of buckets grow indefinitely, we’re going to split them incrementally
* When a bucket is full, we split the bucket and reshuffle its elements

* Uses global and local depths to determine buckets

e Hash table doubles in size to allow for more buckets



Lecture 08 15-445/645 Database Systems Hash Tables

Linear Hashing

Maintain a pointer that tracks the next bucket to split
Overflow criterion is left up to the implementation

When any bucket overflows, split the bucket at the pointer location by adding a new slot entry, and
create a new hash function

If hash function maps to slot that has previously been pointed to by pointer, apply the new hash
function

When pointer reaches last slot, delete original hash function and replace it with new hash function

Hash Functions

We don’t need a cryptographic hash function because we don’t need to get back key from hash

We only care about speed and collision rate



