
Lecture 11: Sort and Join Algorithms
15-445/645 Database Systems (Fall 2017)

Carnegie Mellon University
Prof. Andy Pavlo

Sort
1. We need sorting because in the relation model, tuples in a table have no specific order

2. Sorting is used in ORDER BY, GROUP BY, and DISTINCT

3. If data fits in memory, then we can use a standard algorithm like quicksort

4. If data does not fit, we need to use external sorting

External Merge Sort
1. Sorting phase: Sort small chunks of data that fit in main memory, and then write back to disk

2. Merge phase: Combine sorted subfiles into a larger single file

3. Algorithm for two way merge sort

(a) Pass 0: Reads every B pages of the table into memory. Sorts them, and writes them back into
disk. Each sorted set of pages is called a run

(b) Pass 1,2,3...: Recursively merges pairs of runs into runs twice as long.

4. Number of passes: 1 + ceiling(log2(N))xw

5. Total I/O cost: 2N∗ (# of passes)

6. General algorithm (K-way merge)

(a) Pass 0: Use B buffer pages, produce N/B sorted runs of size B

(b) Pass 1,2,3...: Merge B − 1 runs

(c) Number of passes = 1 + ceiling(logB−1(N/B))

(d) Total I/O cost: 2N∗ (# of passes)

Sorting with B+ Tree

1. We can accelerate sorting using a clustered B+ tree by simply scanning the leaf nodes from left to
right

2. Bad idea using an unclustered B+ tree to sort because it causes a lot of I/O reads (random access
through pointer chasing)

1

http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/


Lecture 11 15-445/645 Database Systems Sort and Join Algorithms

Alternatives to Sorting
1. We can remove duplicates using a hash table

2. Hashing can be computationally cheaper than sorting

Importance of Join
1. Unnecessary repetition of information must be avoided

2. We decompose tables using normalization theory

3. Joins are used to reconstruct original tables

4. Joins are very common, and must be heavily optimized

5. Cartesian products are rarer, but are very computationally expensive

Simple Nested Loop Join
1. Nested for loop iterating over tuples in both tables, if the tuples match the join predicate, then output

them

2. Bad because for every single tuple in one table, you scan every tuple of the other table

3. Optimization: Using the smaller table as the outer table

Block Nested Loop Join
1. Algorithm: reads and compares blocks at a time

2. Algorithm performs fewer disk access because we scan the second table for every block instead of for
every tuple

3. Optimization: Using the smaller table as the outer table reduces the number of I/O

4. You can significantly reduce the cost by using multiple buffers

Index Nested Loop Join
1. Basic nested loop joins are bad because we have to do a sequential scan to check for a match in the

inner table

2. We can use an index to find inner table matches

2



Lecture 11 15-445/645 Database Systems Sort and Join Algorithms

General Nested Loop Join: Summary
1. Pick the smaller table as the outer table

2. Buffer as much of the outer table in memory as possible

3. If possible, leverage an index to find matches in inner table

Sort-Merge Join
1. Sort phase: First sort both input tables on the join attribute

2. Merge phase: Scan the two sorted tables in parallel, and emit matching tuples

3. This algorithm is very useful if one or both tables are already sorted on join key

4. Worst case during join phase: The join attribute of all the tuples in both relations contain the same
value (very unlikely)

Costs of Join Algorithms
1. For tables R and S:

(a) M pages in R, pr tuples per page, m tuples total

(b) N pages in S, ps tuples per page, n tuples total

3


	Sort
	External Merge Sort
	Sorting with B+ Tree
	Alternatives to Sorting
	Importance of Join
	Simple Nested Loop Join
	Block Nested Loop Join
	Index Nested Loop Join
	General Nested Loop Join: Summary
	Sort-Merge Join
	Costs of Join Algorithms

