
Lecture 17: Two-Phase Locking
15-445/645 Database Systems (Fall 2017)

Carnegie Mellon University
Prof. Andy Pavlo

Review

1. Conflict Serializable

(a) Verify using either the swapping method or dependency graphs.

(b) Any DBMS that says they support serializable isolation does this.

2. View Serializable

(a) No efficient way to verify.

(b) Requires knowledge of the program.

(c) Probably no DBMS does this.

Locks vs. Latches
1. Locks

(a) Protect the logical contents from other transactions.

(b) Held for duration of transaction.

(c) Need to be able to rollback changes.

2. Latches

(a) Protects the critical section of the internal data structure from other threads

(b) Held for operation duration

(c) Do not need to be able to rollback changes

Transaction Locks
The DBMS contains a centralized lock manager that decides decisions whether a transaction can have a lock
or not. It has a global view of whats going on inside the system.

1. Shared Lock (S-LOCK): A lock that allows multiple transactions to read the same object at the same
time. If one transaction holds a shared lock, then another transaction can acquire that same shared
lock.

1

http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/


Lecture 17 15-445/645 Database Systems Two-Phase Locking

2. Exclusive Lock (X-LOCK): Allows a transaction to modify an object. This lock is not compatible for
any other lock. Only one transaction can hold an exclusive lock at a time.

3. Shared locks can be shared with shared locks, but exclusive locks can’t be shared with anything.

4. Executing with locks:

(a) Transactions request locks (or upgrades) from the lock manager.

(b) The lock manager grants or blocks requests based on what locks are currently held by other
transactions.

(c) Transactions release locks when they no longer need them.

(d) The lock manager updates its internal lock-table and then gives locks to waiting transactions.

Two-Phase Locking
Two-Phase locking (2PL) is a concurrency control protocol that determines whether a transaction is allowed
to access an object in the database on the fly. The protocol does not need to know all of the queries that a
transaction will execute ahead of time.

1. Phase #1: Growing

(a) Each transaction requests the locks that it needs from the DBMS’s lock manager.

(b) The lock manager grants/denies lock requests.

2. Phase #2: Shrinking

(a) The transaction enters this phase immediately after it releases its first lock.

(b) The transaction is allowed to only release locks that it previously acquired. It cannot acquire
new locks in this phase.

3. On its own, 2PL is sufficient to guarantee conflict serializability. It generates schedules whose prece-
dence graph is acyclic.

4. It is susceptible to cascading aborts, which is when a transaction aborts and now another transaction
must be rolled back, which results in wasted work.

5. There are potential schedules that are serializable but would not be allowed by 2PL (locking can limit
concurrency).

Strict Two-Phase Locking
The transaction only releases locks when it finishes. There really isn’t a shrinking phase like in regular 2PL.

1. A schedule is strict if a value written by a transaction is not read or overwritten by other transactions
until that transaction finishes.

2. The advantage of this approach is that the DBMS does not incur cascading aborts. The DBMS can
also reverse the changes of an aborted transaction by just restoring original values of modified tuples.

2



Lecture 17 15-445/645 Database Systems Two-Phase Locking

2PL Deadlock Handling
A deadlock is a cycle of transactions waiting for locks to be released by each other. There are two ap-
proaches to handling deadlocks in 2PL: detection and prevention.

Approach #1: Deadlock Detection
The DBMS creates a waits-for graph: Nodes are transactions, and edge from Ti to Tj if transaction Ti is
waiting for transaction Tj to release a lock. The system will periodically check for cycles in waits-for graph
and then make a decision on how to break it.

1. When the DBMS detects a deadlock, it will select a “victim” transaction to rollback to break the cycle.

2. The victim transaction will either restart or abort depending on how the application invoked it

3. There are multiple transaction properties to consider when selecting a victim. There is no one choice
that is better than others. 2PL DBMSs all do different things:

(a) By age (newest or oldest timestamp).

(b) By progress (least/most queries executed).

(c) By the # of items already locked.

(d) By the # of transactions that we have to rollback with it.

(e) # of times a transaction has been restarted in the past

4. Rollback Length: After selecting a victim transaction to abort, the DBMS can also decide on how
far to rollback the transaction’s changes. Can be either the entire transaction or just enough queries to
break the deadlock.

Approach #2: Deadlock Prevention
When a transaction tries to acquire a lock, if that lock is currently held by another transaction, then perform
some action to prevent a deadlock. Assign priorities based on timestamps (e.g., older means higher priority).
These schemes guarantee no deadlocks because only one type of direction is allowed when waiting for a
lock. When a transaction restarts, its (new) priority is its old timestamp.

1. Wait-Die (“Old waits for Young”): If T1 has higher priority, T1 waits for T2. Otherwise T1 aborts

2. Wound-Wait (“Young waits for Old”): If T1 has higher priority, T2 aborts. Otherwise T1 waits.

Lock Granularities
If a transaction wants to update a billion tuples, it has to ask the DBMS’s lock manager for a billion locks.
This will be slow because we have to take latches in the lock manager’s internal lock table data structure.
Instead, we want to use a lock hierarchy that allow a transaction to take more coarse-grained locks in the
system. Acquiring a lock for something in this hierarchy implicitly acquires a lock for all its children.

Intention locks allow a higher level node to be locked in shared or exclusive mode without having to check
all descendant nodes. If a node is in an intention mode, then explicit locking is being done at a lower level
in the tree.

1. Intention-Shared (IS): Indicates explicit locking at a lower level with shared locks.

3



Lecture 17 15-445/645 Database Systems Two-Phase Locking

2. Intention-Exclusive (IX): Indicates explicit locking at a lower level with exclusive or shared locks.

3. Shared+Intention-Exclusive (SIX): The subtree rooted at that node is locked explicitly in shared
mode and explicit locking is being done at a lower level with exclusive-mode locks.

Conclusion
1. The application does not typically set locks manually. But sometimes it can provide the DBMS with

hints to help it improve concurrency:
SELECT...FOR UPDATE: Perform a select and then sets an exclusive lock on fetched tuples

2. 2PL is used in almost all DBMS. It automatically provides correct interleavings of transaction opera-
tions. But it must handle deadlocks.

4


	Review
	Locks vs. Latches
	Transaction Locks
	Two-Phase Locking
	Strict Two-Phase Locking
	2PL Deadlock Handling
	Approach #1: Deadlock Detection
	Approach #2: Deadlock Prevention

	Lock Granularities
	Conclusion

