

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/fall2017/
http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #1is due Monday
October 2" @ 11:59pm

Homework #3 is due Wednesday
October 4" @ 11:59pm

. @ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

STATUS

Plannin
We are now going to talk about SIS FEAIG

how to support the DBMS's Operator Execution
execution engine to read/write

data from pages. Access Methods

Buffer Pool Manager
Two types of data structures:

— Hash Tables Disk Manager
— Trees

__ QueryPlanning
| Operator Exection _
| Access Methods
Buffer Pool Manager_
?

@ & CARNEGIE MELLON
gMU 15-445/645 (Fall 2017) '.,'_1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

DATA STRUCTURES

Internal Meta-data
Core Data Storage
Temporary Data Structures
Table Indexes

@ & CARNEGIE MELLON
ZMU 15-445/645 (Fall 2017) '.'_1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TABLE INDEXES

A table index is a replica of a
subset of a table's columns that
are organized and/or sorted for
efficient access using a subset of
those columns.

The DBMS ensures that the
contents of the table and the
index are always in sync.

. @ & CARNEGIE MELLON
EMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TABLE INDEXES

It is the DBMS's job to figure out
the best index(es) to use to
execute each query.

There is a trade-off on the number

of indexes to create per database.
— Storage Overhead
— Maintenance Overhead

. @ & CARNEGIE MELLON
SMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

B+Tree

Skip List

Radix Tree

Extra Index Stuff

. @ & CARNEGIE MELLON
SMU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B-TREE FAMILY

There is a specific data structure
called a B-Tree, but then people
also use the term to generally

refer to a class of data structures.

B-Tree
B+Tree
B'ink-Tree
B*Tree

LI

CMU 15-445/645 (Fall 2017)

8

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE

A B+Tree is a self-balancing tree

data structure that keeps data

sorted and allows searches,

sequential access, insertions, and

deletions in O(log n).

— Generalization of a binary search tree
in that a node can have more than
two children.

— Optimized for systems that read and
write large blocks of data.

CMU 15-445/645 (Fall 2017)

9

The Ubiquitous B-Tree
DOUGLAS COMER

Camputer Science Department, Purdue University, West Lafayette, Indiana 47907

Btrees have become, de facto, Amd.mlmme organization. File indexes of users,

have all been propased

and implemented using B-trees This paper reviews Bt trw-ml ‘shows why they have

been. ful It discusses the

tree, especially the Btree,

contrasting the relutrv rasele s sosta of sech .mplmn.nm Tt illustrates a general
purpase sccess method which uses & B-tree.

Keywords and Phrases: B-tree, B*-iree, B-tree, file organization, index

CR Categories: 373 3.74 4334 34

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use uflhe
computer

intelligently, makmg rhe retrieval process
efficient.

The choice of & good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
retrieval commands which can be illus-
trated by the following examples:
Sequential: “From our employee file, pre-

pare a list of all employees’
names and addresses,” and
Random: “From our employee file, ex-
tract the information about
employee J. Smith".
We can imagine a filing cabinet with three
drawers of folders, ane folder for each em-
ployee. The drawers might be labeled “A-
G,"” “H-R," and “S-Z,” while the folders

might be labeled with the employees last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
‘which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost

x consists of labels on drawers, and the

next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

rmussion to copy without fee all or part of this material is granted provided that the copies are not made or
d‘ll.ribumd for d.mcammmhl -dvunla‘z the ACM copyright notice and l.hc title of the pubbication and s

rhlt -weur and notice s given that copying is by permission of the Association

for Computing Machinery. To

rwise, or to republish, requires u fee and/or specific permission.

3t AcM 0010-4802//79/0600-0121 §00 76

Computing Surveys, Val 11, No 2, June 197

CJ CARNEGIE MELLON
=2 DATABASE GROUP

l

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?doid=356770.356776

B+TREE: PROPERTIES

A B+tree is an M-way search tree

with the following properties:

— |t is perfectly balanced (i.e., every leaf
node is at the same depth).

— Every inner node other than the root,
is at least half-full
M/2-1 < #keys < M-1

— Every inner node with k keys has k+1
non-null children

C_g CARNEGIE MELLON

1COMU 15-445/645 (Fall 2017) L ” DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE OVERVIEW

Inner Node

Leaf Nodes

Sibling Pointers

& & CARNEGIE MELLON
EMU 15-445/645 (Fall 2017) de DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE OVERVIEW

Inner Node

Leaf Nodes

.*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
<+

Sibling Pointers

<value>/<key>

& & CARNEGIE MELLON
EMU 15-445/645 (Fall 2017) de DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE NODES

Every node in the B+Tree contains

an array of key/value pairs.

— The keys will always be the column or
columns that you built your index on

— The values will differ based on
whether the node is classified as
inner nodes or leaf nodes.

The arrays are always kept in
sorted order.

CMU 15-445/645 (Fall 2017)

12

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: LEAF NODE
VALUES

Approach #1: Record Ids L PostgreSQL. #SQL Server

— A pointer to the location of the tuple
that the index entry corresponds to. ORrRACLE

Approach #2: Tuple Data |
— The actual contents of the tuple is ? . %git_ Server

stored in the leaf node. SQthe &5Q
— Secondary indexes have to store the

record id as their values. VW MysqL. ORACLE

. @ & CARNEGIE MELLON
1C3MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE LEAF NODES

L3
*
3
.
*
*
*
.0
-

.0
-
‘e
*

B+Tree Leaf Node

Prev
4—@/@

V1

Kn

Next
] b
P

vg

CMU 15-445/645 (Fall 2017)
14

elD

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE LEAF NODES

B+Tree Leaf Node
v ! Y Prev Next
PagelD{#= 1 | K1 | 4 |eee kn | X nl—; 2
y 3 T v gge
. Key+Value
CMU 15-445/645 (Fall 2017) :-; CARNEGIE MELLON

14 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev Next
| # # of of
v 3

Sorted Keys
¢ ¥ e K1 | k2| k3| k4| K5 |eee kn
o VJueS‘ ‘ ‘ ‘ ‘
. HEIEEEEEEE

CMU 15-445/645 (Fall 2017) :3 CARNEGIE MELLON

14 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B-TREE VS. B+TREE

The original B-Tree from 1972
stored keys + values in all nodes

in the tree.
— More space efficient since each key
only appears once in the tree.

A B+Tree only stores values in
leaf nodes. Inner nodes only
guide the search process.

CMU 15-445/645 (Fall 2017)

15

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: INSERT

Find correct leaf L.

Put data entry into L in sorted order.

— |f L has enough space, done!

— Else, must split L into L and a new node L2
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

Source: Chris Re

C_g CARNEGIE MELLON

1C6MU 15-445/645 (Fall 2017) L = DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREE VISUALIZATION

http://cmudb.io/btree

https.//www.cs.usfca.edu/~gall
es/visualization/BPlusTree.html

@ & CARNEGIE MELLON
5/645 (Fall 2017) =g DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B+TREE: DELETE

Start at root, find leaf L where entry belongs.

Remove the entry.
— If L is at least half-full, done!
— If L has only M/2-1 entries,
* Try to re-distribute, borrowing from sibling
(adjacent node with same parent as L).
* |f re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing
to L or sibling) from parent of L.

Source: Chris Re

C_g CARNEGIE MELLON

1C9MU 15-445/645 (Fall 2017) L = DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREES IN PRACTICE

Typical Fill-Factor: 67%.
— Average Fanout = 2*100*0.67 =134

Typical Capacities:
— Height 4: 1334 = 312,900,721 entries
— Height 3: 1333 = 2,406,104 entries

Pages per level.

— Level 1 = 1page = 8KB
— Level2= 134 pages = 1MB
— Level 3= 17,956 pages =140 MB

CMU 15-445/645 (Fall 2017)

20

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE DESIGN
CHOICES

Merge Threshold
Non-Unique Indexes
Variable Length Keys
Prefix Compression

@ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) :-d DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: MERGE
THRESHOLD

Some DBMSs don't always merge
nodes when it is half full.

Delaying a merge operation may
reduce the amount of
reorganization.

CMU 15-445/645 (Fall 2017)

22

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: NON-UNIQUE
INDEXES

Approach #1: Duplicate Keys
— Use the same leaf node layout but
store duplicate keys multiple times.

Approach #2: Value Lists
— Store each key only once and
maintain a linked list of unique values.

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: DUPLICATE

KEYS
B+Tree Leaf Node
Level Slots Prev Next
| # # of of
g 3
Sorted Keys
Y ¥ Y y K2 | K2 |eee| Kn
........ g | d | B | 0| O |[eee K
CMU 15-445/645 (Fall 2017) :-; CARNEGIE MELLON

24 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: VALUE LISTS
B+Tree Leaf Node

Level Slots Prev Next
| # # X X
g !
Sorted Keys
— —— K1 | K2 | K3 | K4 | K5 |eee| Kn
e Values
...... H| x| o
Jof Jof

@ & CARNEGIE MELLON
%2 DATABASE GROUP

CMU 15-445/645 (Fall 2017)
25

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: VARIABLE
LENGTH KEYS

Approach #1: Pointers
— Store the keys as pointers to the tuple’s
attribute.

Approach #2: Variable Length Nodes
— The size of each node in the B+Tree can vary.
— Requires careful memory management.

Approach #3: Key Map
— Embed an array of pointers that map to the
key + value list within the node.

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: PREFIX
COMPRESSION

The keys in the inner nodes are
only used to "direct traffic".

— We don't actually need the entire key.

Store a minimum prefix that is
needed to correctly route probes
into the index.

CMU 15-445/645 (Fall 2017)

27

[abedetehi] [Lmnoparstuv |

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE: PREFIX
COMPRESSION

The keys in the inner nodes are
only used to "direct traffic".

— We don't actually need the entire key.

Store a minimum prefix that is
needed to correctly route probes
into the index.

CMU 15-445/645 (Fall 2017)

27

abc 1mn|

|

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE BULK INSERT

The fastest/best way to build a
B+Tree is to first sort the keys and
then build the index from the
bottom up.

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE BULK INSERT

The fastest/best way to build a Keys: 3, 7,9, 13, 6, 1

B+Tree is to first sort the keys and Sorted Keys: 1,3, 6, 7, 9, 13
then build the index from the

bottom up.

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE BULK INSERT

The fastest/best way to build a Keys: 3,7, 9,13, 6, 1

B+Tree is to first sort the keys and Sorted Keys: 1,3, 6, 7, 9, 13
then build the index from the

bottom up.

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE BULK INSERT

The fastest/best way to build a Keys: 3,7, 9,13, 6, 1

B+Tree is to first sort the keys and Sorted Keys: 1,3, 6, 7, 9, 13
then build the index from the

bottom up.

\

AN

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

Y
w

(

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

OBSERVATION

The easiest way to implement a
dynamic order-preserving index is
to use a sorted linked list.

All operations have to linear search.
— Average Cost: O(N)

K1| e k2| &1 k3| e k4| e k5| @1f k6| @1 k7| &1

. @ & CARNEGIE MELLON
;;vlu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

OBSERVATION

The easiest way to implement a
dynamic order-preserving index is
to use a sorted linked list.

All operations have to linear search.
— Average Cost: O(N)

®

ﬂ

L L
@

1 !} 1
— k2| o k3| e k4| e k5| e k6| 1 k7

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

tlele

>
o——>
o>

K1

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS

Invented in 1990.

Multiple levels of linked lists wi
extra pointers that skip over
intermediate nodes.

Maintains keys in sorted order
without requiring global
rebalancing.

CMU 15-445/645 (Fall 2017)

30

I

Skip Lists: A Probal
Balanced Trees

stic Alternative to

Skip lists are a data structure that can be wsed i place of balanced trees.
Skip lists wse probabilistic balancing rather than stricily enforced balancing

andd as a result the algorithms for insertion and deledion in skip

el simpler and significantly faster than equivalent algori

balanced trees.
William Pugh
Bl tees canbe e for eeeesesing bt s ypes

o uperssions, sch 2 inseting the clesenss in arder, prduce
sgmens st g v o o, |

a5 are

Ao giving every fouth node 2 poines o abea (Figure
1<) requires that no more thanl /4] + 2 nodes be examaned.
fevery (2

einer 2 nodes ead (Fgare
s thd et be i s b rdusd 10
Tiogy ! sl unly coubing the munbes o plates. This

s pouiie Batn et coukd b U (o 38t AZENID, Do o

P impraceical.

s e, I st cases qeries must be answere on-Jin Ao bt s o .
i s levery 2 nodes dhead. thea levels

stgorithms s siple panem: $0% are evel 1

254% arelevel 3, 12.5% are level 3 smd s0.0n. What wensd

appen I she evels of nodes were choven saondy. but n the
s 7 A s ovard
T noes

pssne, e of pesneing 2
et e of evel o gher. Tnser

chuses
ety whe the newk i serted, noed s shaogs. Sare
arrasgements ofJevels would pive poor execunce e, bu
‘e will st sueh, erangenmesesare pare, Bocauce dve.

I tae e
i an in » wlionk
s e s 1t o e

s, yet do et roquine isserions

sk st skip.
e tcrmedite nodcs, | samet thess ke it

SKIP LIST ALGORITHMS
Thissccacm givesalgorghans t sesrch f, nser snd dekere
i able. The y

e

explicily masmining the belance. For
sl s ok i prsaion s, o
Ieding o sl 815D skipl

and self-adjusting ree algorshns. Skiy
pace efficienn They ean easly be condy
avcrage of | 11 psters per element (oc even s

e ety oo e e i

SKIP LISTS
st e i e s of B -,y
g 2 linked st {Figure 1. I the s s st i sorvd onder

Each clemen b rgreseniod by & node. the level af which
is choses randamly when e noxe s Inseres without regard
for the number of clements i e data snuctere. A evel

e b fvwan painices, e | ecugh s, We 45 ot

me approprisie conciant MaxLeve!. The lrvelof a
Vst the sanimm level urrently in e I Gor 13f the it i
empry). The hvader cd b b foeward pointers levels ane
hough MasLevet. The foswsed oisters o the header

Jevels bigher than e curren mivdmums level of the 1t polnt
1o NI

RocksDB

CJ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=78977

SKIP LISTS

A collection of lists at different levels

— Lowest level is a sorted, singly linked list of all keys
— 2nd level links every other key

— 3rd level links every fourth key

— In general, a level has half the keys of one below it

To insert a new key, flip a coin to decide how
many levels to add the new key into.
Provides approximate O(log n) search times.

CMU 15-445/645 (Fall 2017)

31

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: EXAMPLE

Levels End
o >| 00
[P-N/4]
P NK2| @ NKkg| @ 00
|P=N/2] ’ ?
o k1 o——>|7<+2 o k3 o——»'T(tl o) k6| o1 00
|| v2 V2 V3 V4 V6

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: EXAMPLE

Levels End

B

@ & CARNEGIE MELLON
5/645 (Fall 2017) =g DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: EXAMPLE

Levels End
o {00
—N/4

o k1| e k2| & Kk3| & ks]| ® k6 | @ 00
=N 1lvi1 V2 V3 V4 V6
CMU 15-445/645 (Fall 2017) :d; CARNEGIE MELLON

32 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: EXAMPLE

Levels End

° k2| @ NKka| @ »@

=N |lv1 V2 V3 V4 V6

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

Levels A LS End
o >| 00
—N/4
P K2 | @ M k4| o >| 00
=N/2 ’ ?
o[k1 o——>|7<+2 o[k3 o——>|7<tl o k6| o oo
=N 1l v1 V2 V3 V4 V6

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

Levels A LS End
o K5 >|oo
=N/4 ?

Y
P NK2| @ kg | e+H k5 00
e ’ ¢ ’

Y
o k1 o——>|7<+2 o-f«3 o——»'T(tl o-H«s k6| o4 oo
=N 1l v1 V2 V3 V4 V5 V6

. @ & CARNEGIE MELLON
;I:/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

Levels A LS End
K5 00
=N/4 ?
Y
P o K2 o K4 K5 00
e ’ ¢ ’
Y
o { k1 —>|7<+2 o k3 o——>|7<t; K5 K6 ¥ 00
=N 1l v1 V2 V3 V4 V5 V6

CMU 15-445/645 (Fall 2017)

33

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

Levels S End
o M K5| @ 00
=N/4 ?

J
P NK2| @ M ka| @4—l k5| @ 00
e ’ ¢ ’
o k1 o——>|7<+2 o k3 o——»'T(tl o——>|7<+5 o k6 | o 00
=N 1l v1 V2 V3 V4 V5 V6

. @ & CARNEGIE MELLON
%\/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: SEARCH

Levels A End

i | k5 00
=N/4 ?
J

P o K2 o K4)l K5 00
e ’ ¢ ’

o { k1 —>|7<+2 o k3 o——>|7<tl —>|7<+5 | k6 ¥ 00

=N 1l v1 V2 V3 V4 V5 V6

CMU 15-445/645 (Fall 2017)
34

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: SEARCH

Levels A End
¥ K3<K5 Pr: @
—N/4
P NK2| @ o K4) K5 | @ 00
e ’ ¢ ’
o K1 o——>|7<+2 o k3 o——»'T(tl —>|7<t' o K6 ¥ 00
=N 1l v1 V2 V3 V4 V5 V6

CMU 15-445/645 (Fall 2017)
34

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: SEARCH

Levels A End
° I<3<K5 rae ’E
P=N/4 ?
¥
¥ K3>K2 K2 ks ed-{ks[@ =
=N/2 ? ’
o k1| e k2| k3 o——»'T(tl o——>|7<t' o K6 | o 00
P=N"11v1 V2 V3 V4 V5 V6

. @ & CARNEGIE MELLON
gz/lu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: SEARCH

Levels A End

° I<3<K5 rae ’E
P=N/4 ?

¥

. K3>K2‘K2 o K3<K4 7 [e ’E
P=N/2 ’ ’

o k1 o——>|7<+2 o k3| & k4 o——>|7<t' o K6 | o 00

P=N 11 v1 V2 V3 V4 V5 V6

. @ & CARNEGIE MELLON
gz/lu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: SEARCH
Find K3

Levels End
. K3<K5 k5| @ E
P=N/4 ?
R]
. K3>K2] e K3<K4 2] el k5] e E
P=N/2 0 ® ?
o—H{ k1 o——»'JKzL 3 K4 “_’W(t_ &1 K6 | & {00
=N | [y7 V2 V3 V4 V5 Ve

. @ & CARNEGIE MELLON
gz/lu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

First logically remove a key from
the index by setting a flag to tell
threads to ignore.

Then physically remove the key
once we know that no other
thread is holding the reference.

CMU 15-445/645 (Fall 2017)

{H

.

"

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://www.cs.berkeley.edu/~stephentu/presentations/workshop.pdf

SKIP LISTS: DELETE

Delete K5

Levels End
. >| 00
_N/4
® k2| @ N ka| o >| 00
=N/2 ’ ?
o1l k1 o——>|7<+2 o1 k3 o——>|7<t1 o k6| e 0o
v |2 lpe |V lEE (v EE v6 [

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

Delete K5

Levels End
o >| 00
_N/4
P k2| @ N ka| o >| 00
=N/2 ’ ?
o1l k1 o——>|7<+2 o1 k3 o——>|7<t1 o k6| e 0o
v |2 lpe |V lEE (v EE v6 [

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

Delete K5
Levels End
° K5 >| 00
=N/4 ?
¥
P k2| @ o ka| e k5 00
e ’ ’ ’
o+ K1 o——>|7<+2 o) k3 o——>|7<t1 o——>|7<+5 K6| @ >| 00
N2 =5 N7 < ENED < D s E ve [
CMU 15-445/645 (Fall 2017) :-; CARNEGIE MELLON

i "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

Delete K5
Levels End
° K5 >| 00
=N/4 ?
¥
P k2| @ N Kka| @ K5 >| 00
=N/2 ’ ? ®
o+ K1 o——>|7<+2 o) k3 o——>|7<t1 o——>|7<Y5 K6| @ >| 00
N2 =5 N7 < ENED < D s E ve [
CMU 15-445/645 (Fall 2017) :-; CARNEGIE MELLON

i "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

End

B

B

Delete K5
Levels

® K5
=N/4 ?
¥

P k2| @ N Kka| @ K5
=N/2 ’ ? ®
,I+ _,I_+ 3

ot k1| e k2| o k3| 4| k4] @ K5
N llva i (el (V3R | va A | Vs

CMU 15-445/645 (Fall 2017)

36

k6| @ m

Del
V6 false

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

Delete K5

Levels End
° K5 >| 00
_N/4
P k2| @ N Kka| @ K5 >| 00
=N/2 ’ ?
o+ K1 o——>|7<+2 o) k3 o——>|7<t1 © K5 H k6| @ >|oo
(v (v e (e (w4 (VS ve [

CMU 15-445/645 (Fall 2017)

36

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS:
ADVANTAGES

Uses less memory than a typical B+Tree
if you don’t include reverse pointers.

Insertions and deletions do not require
rebalancing.

. @ & CARNEGIE MELLON
gvlu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SKIP LISTS:
DISADVANTAGES

Not disk/cache friendly because they

do not optimize locality of references.

Invoking random number generator
multiple times per insert is slow.

Reverse search is non-trivial.

CMU 15-445/645 (Fall 2017)

38

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE

Uses digital representation of keys to
examine prefixes one-by-one instead of

comparing entire key.

— The height of the tree depends on the
length of keys.

— Does not require rebalancing

— The path to a leaf node represents the key
of the leaf

— Keys are stored implicitly and can be
reconstructed from paths.

C_g CARNEGIE MELLON

gg/lu 15-445/645 (Fall 2017) L = DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE

Trie
B,
LT Y =T
o
Ly EJ
o
02 Keys: HELLO, HAT, HAVE
CMU 15-445/645 (Fall 2017) :3 CARNEGIE MELLON

40 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE

Trie

Keys:|HELLOJ HAT, HAVE

. @ & CARNEGIE MELLON
Zg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE

Trie
E
LT YT
o
Ly EJ
o
02 Keys: HELLOJHAT, HAVE
CMU 15-445/645 (Fall 2017) :-; CARNEGIE MELLON

40 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE

Trie Radix Tree

V
T VE T

X

HJ{
ﬂL\AL ELLO A
B oo O
5 o

v
X

r
e | |e=
m

Keys: HELLO, HAT, HAVE

CMU 15-445/645 (Fall 2017) ‘..'_:'"i S#A_Fle_xlliﬁgé\dgﬁ_gﬂp

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE

Trie Radix Tree
B,
L ¢ _H T
o
Ly EJ
o
02 Keys:[HELLO] HAT, HAVE
CMU 15-445/645 (Fall 2017) :; CARNEGIE MELLON

40 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE:
MODIFICATIONS

1
[ELLO A

HovEY
P4

CMU 15-445/645 (Fall 2017)

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE:

MODIFICATIONS
T Insert HAIR
[ELLO A
| N
k] [VE T IlM
{ J
o X X

"2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE:

MODIFICATIONS
H Insert HAIR
e Delete HAT, HAVE
[ELLO A
|
X
CMU 15-445/645 (Fall 2017) :; CARNEGIE MELLON

4 =2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE:

MODIFICATIONS
H Insert HAIR
e Delete HAT, HAVE
[ELLO A

|

L IR

X
CMU 15-445/645 (Fall 2017) :; CARNEGIE MELLON

4 =2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE:

MODIFICATIONS
H Insert HAIR
N Delete HAT, HAVE
[ELLO A
6w
H IR
o
CMU 15-445/645 (Fall 2017) :3 CARNEGIE MELLON

4 =2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE:

MODIFICATIONS
]
[ELLO ATR]
:
o o

CMU 15-445/645 (Fall 2017)
41

Insert HAIR
Delete HAT, HAVE

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE: BINARY
COMPARABLE KEYS

Not all attribute types can be decomposed

into binary comparable digits for a radix tree.

— Unsigned Integers: Byte order must be flipped for
little endian machines.

— Signed Integers: Flip two’s-complement so that
negative numbers are smaller than positive.

— Floats: Classify into group (neg vs. pos, normalized
vs. denormalized), then store as unsigned integer.

— Compound: Transform each attribute separately.

CMU 15-445/645 (Fall 2017)

42

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE: BINARY
COMPARABLE KEYS

Int Key: 168496141

4
Hex Key: 0A 6B 6C 6D
OA oD
oB oC
oC oB
oD OA

Big Endian Little Endian

. @ & CARNEGIE MELLON
Zg/lU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE: BINARY
COMPARABLE KEYS

OA}
OFOFOF OB

Int Key: 168496141

\ 4
Hex Key: 6A 6B 6C 6D
OA oD
oB oC
oC oB
oD OA

Big Endian Little Endian

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RADIX TREE: BINARY
COMPARABLE KEYS

Int Key: 168496141

Hex Key: 0A 6B 6C 6D

OA

oD

oB

oC

oC

oB

oD

OA

Big Endian Little Endian

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

Source: Huanchen Zhang

SINGLE-THREADED
PERFORMANCE

Data Set: 30m Random 64-bit Integers

IOB+Tree m Masstree mSkip List mBw-Tree = Radix
1

. 23.7

2 3

(S

@

0

@

c

9

= 2.9

o 1.9 19

o |

: Bl
Read-only Insert-only Read/Write Scan/Insert

. @ & CARNEGIE MELLON
LC;LVIU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://db.cs.cmu.edu/papers/2016/zhang-sigmod2016.pdf

SELECTION
CONDITIONS

The DBMS can use a B+Tree index if
the query provides all of the attributes

in a prefix of the search key.

— Index on <a, b, c> matches (a=5 AND b=3),
but not b=3.

For Hash index, we must have all
attributes in search key.

CMU 15-445/645 (Fall 2017)

45

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE PREFIX

SEARCH

Find "XY"

CMU 15-445/645 (Fall 2017)
46

YZ

XX

XY

ZY

Y44

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

B+TREE PREFIX
SEARCH

Find "XY" >9

YZ
o o o

Find "_Y" / \

XX | [XY ZY || ZZ

. @ & CARNEGIE MELLON
Z(I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PARTIAL INDEXES

Create an index on a subset of CREATE INDEX idx_foo
the entire table. This potentially ON foo (a, b)
reduces its size and the amount \WHERE ¢ = 'WuTang'|

of overhead to maintain it.

CMU 15-445/645 (Fall 2017 @ & CARNEGIE MELLON
47 e %2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PARTIAL INDEXES

Create an index on a subset of

the entire table. This potentially
reduces its size and the amount
of overhead to maintain it.

CMU 15-445/645 (Fall 2017)

a7

CREATE INDEX idx_foo
ON foo (a, b)
WHERE c = 'WuTang'

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang'

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

COVERING INDEXES

If all of the fields needed to CREATE INDEX idx_foo
process the query are available in ON foo (a, b)
an index, then the DBMS does not
need to retrieve the tuple. SELECT b FROM foo

WHERE a = 123

. @ & CARNEGIE MELLON
Zg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

COVERING INDEXES

If all of the fields needed to CREATE INDEX idx_foo
process the query are available in ON foo_{a, b)
an index, then the DBMS does not
need to retrieve the tuple.

CMU 15-445/645 (Fall 2017 @ & CARNEGIE MELLON
48 e %2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX INCLUDE

COLUMNS

Embed additional columns in CREATE INDEX idx_foo
indexes to support index-only ON foo (a, b)
queries. INCLUDE (c)

Not part of the search key. SELECT b FROM foo

WHERE a = 123
AND c = 'WuTang'

. @ & CARNEGIE MELLON
ZQ/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX INCLUDE
COLUMNS

Embed additional columns in
indexes to support index-only
queries.

Not part of the search key.

CMU 15-445/645 (Fall 2017)

49

CREATE INDEX idx_

foo

INCLUDE (c)
SELECT
WHERE

AND "Wul an

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONCLUSION

The venerable B+Tree is always a
good choice for your DBMS.

Skip Lists and Radix Trees have
some interesting properties.

We will cover lock free data
structures in 15-721.

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

NEXT CLASS

Query Processing
— How to use what we've talked about
so far to actually execute queries!

@ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

