

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/fall2017/
http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #1is due TODAY @ 11:.59pm
Homework #3 is due Wednesday October 4" @ 11:59pm
Mid-term Exam is on Wednesday October 18" (in class)

Project #2 is due Wednesday October 25" @ 11:59am

. @ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

LECTURE #08
CORRECTION

A

Nasty Deez Nutz In Yo Moth 2 months ago
why we do have to suffer with these bad lectures? professor pavlo sucks straight up.

REPLY 11 il

REPLY 53 s ®!

DaOldSchoolRapJiveTurkey94 2 weeks ago

Andy is awful. He speaks so fast that | get headaches. | wish somebody that was at
CMU would stab him.

REPLY 139 e

View all 16 replies v

. Thel4thChapter 9 hours ago
Yo i herd that andy pushed this old lady down the stairs. hes awful. databases are
tight and all but he needs to stop with dez bad lectures. santa monica out!

CMU 15-445/645 (Fall 2017)
3

S

CARNEGIE MELLON

"% DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

LECTURE #08
CORRECTION

a5 Highlighted comment * Pinned by CMU Database Group
William Cody Laeder 2 days ago

City/Farm don't use SIMD this hurts portability (Google ships farmhash in Chrome).
They use a small buffer internally (normally 64, XXHash uses 256 for larger mode). If
the hash internally tries to fill this buffer before it computes a digest (and XOR the
old digest with the new 64bytes digest), and if it that buffer isn't full it does a unique

REPLY 1@ &

. @ & CARNEGIE MELLON
gMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=OFYVwCDQcVk&lc=z23ajj34uzazdxpnkacdp43bzbnp414cuxq4zh450qhw03c010c

STATUS

Planni
We are now going to talk about

how the DBMS execute queries Operator Execution
that retrieve data from the
system's access methods.

Access Methods

Buffer Pool Manager

Disk Manager

. @ & CARNEGIE MELLON
ZMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

QUERY PLAN

The operators are arranged in a
tree. Data flows from the leaves
toward the root.

The output of the root node is the
result of the query.

CMU 15-445/645 (Fall 2017)

5

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

G value>100
N

A B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

Processing Models
Access Methods
Expression Evaluation
Project #2

CMU 15-445/645 (Fall 2017)

6

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

Processing Model

A DBMS's processing model
defines how the system executes

a query plan.
— Different trade-offs for different
workloads.

Three approaches:

— |terator Model

— Materialization Model

— Vectorized / Batch Model

@ & CARNEGIE MELLON
SMU 15-445/645 (Fall 2017) '.'_1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ITERATOR MODEL

Each query plan operator implements

a next function.

— On each invocation, the operator returns
either a single tuple or a null marker if there
are no more tuples.

— The operator implements a loop that calls
next on its children to retrieve their tuples
and then process them.

Top-down plan processing.
Also called Volcano or Pipeline Model.

CMU 15-445/645 (Fall 2017)

8

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

u -
CMUI5-445/645 (Fall201) G gy gy mEEEEEEEEEEEEEEEEEESEEEESEESEEESESESEEEEEEEEEN == DATABASE GROUP

9

ITERATOR MODEL

for t in child.Next():

emit(projection(t))

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id

€~......... AND B.value > 100

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,Xt,)

<E"-----.,...

for t in chi
if evalPre

1d.Next(): e .
d(t): emit(t) <

emit(t)

for t in A:

A

for t in B:
emit(t)

'.

."n A.id, B.value
I..

""-NA.id=B.id

EEEEERGvalue>1@0

N

43.....u"“.,‘\r.""_..... B

CARNEGIE MELLON

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ITERATOR MODEL

for t in child.Next():
emit(projection(t))

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,Xt,)

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

for t in child.Next():
if evalPred(t): emit(t)

for t in A:
emit(t)

CMU 15-445/645 (Fall 2017)

9

for t in B:
emit(t)

,l: A.id, B.value

G value>100
AN

A B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ITERATOR MODEL

for t in child.Next():
emit(projection(t))

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,Xt,)

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

for t in child.Next():
if evalPred(t): emit(t)

for t in A:
emit(t)

CMU 15-445/645 (Fall 2017)

9

for t in B:
emit(t)

G value>100
AN

A B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ITERATOR MODEL

1
2,

for t in child.Next():
emit(projection(t))

«for t, in left.Next():
buildHashTable(t,)
for t, in right.Next():

if probe(t,): emit(t,Xt,)

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

©

for t in child.Next():
if evalPred(t): emit(t)

for t in A:
emit(t)

CMU 15-445/645 (Fall 2017)

9

for t in B:
emit(t)

G value>100
AN

A B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ITERATOR MODEL

©

for t in child.Next():
emit(projection(t))

2,

«for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t1;;?}q

for t in A:
emit(t)

CMU 15-445/645 (Fall 2017)

9

\

-for t in child.Next():
for t in B: e

emit(t)

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

G value>100
AN

A B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ITERATOR MODEL

This is used in almost every CIOlflgpel_\'ll_f
DBMS. Allows for tuple pipelining.
@ NUO

Some operators will block until
children emit all of their tuples. ORACLE W\ MysaqL.

— Joins, Subqueries, Order By

Microso

: , % SQit_ Server PostgreSQL
Output control works easily with

Ti?— If\a/l Fl)Tp roach. V‘I|:RT|C/\ @ Greenplum

. @ & CARNEGIE MELLON
1COMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MATERIALIZATION
MODEL

Each operator processes its input
all at once and then emits its

output all at once.

— The operator "materializes” it output
as a single result.

— The DBMS can push down hints into
to avoid scanning too many tuples.

Bottom-up plan processing.

CMU 15-445/645 (Fall 2017)

1

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MATERIALIZATION
MODEL

out = { }

for t in child.Output():
out.add(projection(t))

out = { }

for t, in left.Output():
buildHashTable(t,)
for t, in right.Output():
if probe(t,): out.add(t,Xt,)

out = { }
for t in A:
out.add(t)

CMU 15-445/645 (Fall 2017)

12

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

out = { }
for t in child.Output():
if evalPred(t): out.add(t)

out = { }
for t in B:
out.add(t)

,l: A.id, B.value

G value>100
AN

A B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MATERIALIZATION

MODEL

out = { }

for t in child.Output():
out.add(projection(t))

out = { }

for t, in left.Output():
buildHashTable(t,)

/’for t, in right.Output():

out = { }
for t in A:
out.add(t)

CMU 15-445/645 (Fall 2017)
12

if probe(t,): out.add(tﬁ:h\)
1

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

out = { }
<:rfor t in child.Output():

©

._ii;sxalggsgft): out.add(

out = { } “E!’

for t in B:
out.add(t)

G value>100
AN

CARNEGIE MELLON

-
"2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MATERIALIZATION
MODEL

out = { }
e for t in child.Output():
<:f t.add(projection(t))

-SHL_..__=__‘\

out = { }

4

for t, in left.Output():
buildHashTable(t,)
for t, in right.Output():
if probe(t,): out.add(tﬁ:h\)
|

out = { }
for t in A:
out.add(t)

CMU 15-445/645 (Fall 2017)

12

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

out = { }
<:rfor t in child.Output():

©

._ii;sxalggsgft): out.add(

out = { } “E!’

for t in B:
out.add(t)

G value>100
AN

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MATERIALIZATION
MODEL

Better for OLTP workloads
because queries typically only
access a small number of tuples

at a time.

— Lower execution / coordination
overhead.

— More difficult to parallelize.

Not good for OLAP queries with
large intermediate results.

CMU 15-445/645 (Fall 2017)

13

mone;ID

vvvv
YOLTDB

i oniie
HYRISE
==

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VECTORIZATION
MODEL

Like Iterator Model, each operator
implements a next function.

Each operator emits a batch of

tuples instead of a single tuple.

— The operator's internal loop
processes multiple tuples at a time.

— The size of the batch can vary based
on hardware or query properties.

CMU 15-445/645 (Fall 2017)

14

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VECTORIZATION

MODEL

2,

out = { }

for t in child.Output():
<: out.add(projection(t))
1 n: emit(out)

out = { }

for t, in left.Output():
buildHashTable(t,)

for t, in right.Output():
if probe(t,): out.add(t,t,)

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

if |out|>n: emit(out)

out = { }

for t in child.Output():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = { }
for t in A:
out.add(t)

CMU 15-445/64 if |out|>n: emit(out)

out = { }
for t in B:
out.add(t)
if |out|>n: emit(out)

,l: A.id, B.value

G value>100
AN

A B

15

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VECTORIZATION

MODEL

out = { }

1

for t in child.Output():
<: out.add(projection(t))

n: emit(out)

out = { }
for t, in left

buildHashTab

if probe(t,)

.Output():

le(t,)

for t, in right.Output():
: out.add(t,P>X,)
if |out|>n: emit(out)

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

C

out = { }
Lfor t in child.Output():
if evalPred(t): out.add(t)

1 ~Eemit(out)
out = { } out = { }
for t in A: for t in B:
out.add(t) out.add(t)
cmuts-445644 if |out|>n: emit(out) if |out|>n: emit(out)

,l: A.id, B.value

G value>100
AN

15

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VECTORIZATION
MODEL

|deal for OLAP queries

— Greatly reduces the number of
invocations per operator.

— Allows for operators to use
vectorized (SIMD) instructions to
process batches of tuples.

CMU 15-445/645 (Fall 2017)

16

“* vectorwise

SoPeloton presto s

Microsoft®

ZSQLServer ORACLE

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PROCESSING MODELS

SUMMARY

Iterator / Volcano Materialization

— Direction: Top-Down — Direction: Bottom-Up
— Emits: Single Tuple — Emits: Entire Tuple Set
— Target: General Purpose — Target: OLTP
Vectorized

— Direction: Top-Down
— Emits: Tuple Batch
— Target: OLAP

. @ & CARNEGIE MELLON
1C7MU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ACCESS METHODS

An access method is a way that
the DBMS can access the data

stored in a table.
— Not defined in relational algebra.

Three basic approaches:
— Sequential Scan

— Index Scan

— Multi-Index / "Bitmap" Scan

CMU 15-445/645 (Fall 2017)

18

SELECT A.id, B.value
FROM A, B

WHERE A.1id = B.1id
AND B.value > 100

G value>100

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SEQUENTIAL SCAN

For each page in the table:

— Retrieve it from the buffer pool.

— lterate over each tuple and check
whether to include it.

for page 1n table.pages:
for t in page.tuples:
if evalPred(t):
// Do Something!

The DBMS maintains an internal
cursor that tracks the last page /
slot it examined.

@ & CARNEGIE MELLON
1C9MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SEQUENTIAL SCAN:
OPTIMIZATIONS

This is almost always the worst
thing that the DBMS can do to
execute a query.

Sequential Scan Optimizations:
— Prefetching
— Parallelization
— Zone Maps
— Buffer Pool Bypass
— Heap Clustering

. @ & CARNEGIE MELLON
;(I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ZONE MAPS

Pre-computed aggregates for the attribute

values in a page.

DBMS can check the zone map first to

decide whether it wants to access the page.

SELECT * FROM table
WHERE val > 600

Original Data

val
100

CMU 15-445/645 (Fall 2017)
21

200

300

400

400

»

Zone Map

type val

MIN

100

MAX

400

AVG

280

SUM

1400

COUNT

5

cloudera

IMPALA

ORACLE @ NETEZZA

\RNEGIE MELLON

_ _ ATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

BUFFER POOL BYPASS

The sequential scan operator will

not store fetched pages in the Informlé(

buffer pool to avoid overhead.

— Memory is local to running query.

— Works well if operator needs to read
a large sequence of pages that are
contiguous on disk.

Called "Light Scans" in Informix.

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

HEAP CLUSTERING

Tuples are sorted in the heap's
pages using the order specified
by a clustering index.

If the query accesses tuples using
the clustering index's attributes,
then the DBMS can jump directly
to the pages that it needs.

S [ez o o

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HEAP CLUSTERING

Tuples are sorted in the heap's
pages using the order specified
by a clustering index.

Scan Direction

If the query accesses tuples using
the clustering index's attributes,
then the DBMS can jump directly
to the pages that it needs.

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX SCAN

The DBMS picks an index to find
the tuples that the query needs.

Which index to use depends on:
— What attributes the index contains
— What attributes the query references

— The attribute's value domains

— Predicate composition

— Whether the index has unique or non-
unigue keys

CMU 15-445/645 (Fall 2017)

24

Later: Query
Optimization

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX SCAN

Suppose that we a single table with

100 tuples and two indexes:
— Index #1. age
— |Index #2: dept

Scenario #1

There are 99 people
under the age of 30
but only 2 people in
the CS department.

CMU 15-445/645 (Fall 2017)
25

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

Scenario #2

There are 99 people
in the CS department
but only 2 people
under the age of 30.

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MULTI-INDEX SCAN

If there are multiple indexes that

the DBMS can use for a query:

— Compute sets of record ids using each
matching index.

— Combine these sets based on the
query's predicates (union vs. intersect).

— Retrieve the records and apply any
remaining terms.

Postgres calls this "Bitmap Scan”

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us

MULTI-INDEX SCAN

With an index on age and an

index on dept,

— We can retrieve the record ids
satisfying age<30 using the first,

— Then retrieve the record ids satisfying
dept="CS' using the second,

— Take their intersection

— Retrieve records and check
country="'US".

CMU 15-445/645 (Fall 2017)

27

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MULTI-INDEX SCAN

Set intersection can be done with
bitmaps, hash tables, or Bloom filters.

AN

age<30

record ids

CMU 15-445/645 (Fall 2017)
28

AN

dept='CS’

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MULTI-INDEX SCAN

Set intersection can be done with
bitmaps, hash tables, or Bloom filters.

AN AN

age<30 dept='CS’

. record ids
record ids

CMU 15-445/645 (Fall 2017)
28

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MULTI-INDEX SCAN

Set intersection can be done with
bitmaps, hash tables, or Bloom filters.

AN AN

age<30 dept='CS’

. record ids
record ids

fetch records country="'US'

CMU 15-445/645 (Fall 2017)
28

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX SCAN PAGE
SORTING

Retrieving tuples in the order that 4;

appear in an unclustered index is
inefficient.

The DBMS can first figure out all
the tuples that it needs and then
sort them based on their page id.

CJ_' CARNEGIE MELLON

;I;/IU 15-445/645 (Fall 2017) L = DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX SCAN PAGE
SORTING

Scan Direction

Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

The DBMS can first figure out all
the tuples that it needs and then
sort them based on their page id.

C_a CARNEGIE MELLON

CMU 15-445/645 (Fall 2017
o = Y2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX SCAN PAGE
SORTING

Scan Direction

Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

The DBMS can first figure out all
the tuples that it needs and then
sort them based on their page id.

—_ e e e e
SO

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX SCAN PAGE
SORTING

Retrieving tuples in the order that Scan Direction
appear in an unclustered index is
inefficient.

The DBMS can first figure out all
the tuples that it needs and then
sort them based on their page id.

—_ e e e e
SO

N W N QT U QT G §
OSSOSO

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXPRESSION

EVALUATION

SELECT A.id, B.value
The DBMS represents a WHERE FROM A, B
clause as an expression tree. WHERE A.id = B.id
The nodes in the tree represent AND B.vol 2 120

different expression types: AND

— Comparisons (=, <, >, 1=)
— Conjunction (AND), Disjunction (OR) / \
= >

Arithmetic Operators (+, -, *, /, %)

_)
— Constant Values
— Tuple Attribute References / \

Atribute(A.id) Attribute(B.id) Atribute(val) Constant(100)

. @ & CARNEGIE MELLON
g(r;/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXPRESSION
EVALUATION

Execution Context

SELECT * FROM B Current Tuple Query Parameters Table Schema
WHERE IB.val = ? + 1 (123, 1000) (int:999) B>(int:id, int:val)

—

Attribute(val)

Parameter(0) Constant(1)

@ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) :,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXPRESSION
EVALUATION

Execution Context

SELECT * FROM B Current Tuple Query Parameters Table Schema
WHERE IB.val = ? + 1 (123, 1000) (int:999) B>(int:id, int:val)

— =

Attribute(val) +

RPN

Parameter(0) Constant(1)

@ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) L-d DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXPRESSION

EVALUATION
Execution Context
SELECT x FROM B Current Tuple Query Parameters Table Schema
WHERE IB.val = ? + 1 (123, 1000) (int:999) B>(int:id, int:val)

—

Attribute(val) +
1000 ,/’__/,/ \\~—~\\
Parameter(0) Constant(1)
999
CMU 15-445/645 (Fall 2017) &= & CARNEGIE MELLON

31 %2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXPRESSION

EVALUATION
Execution Context
SELECT x FROM B Current Tuple Query Parameters Table Schema
WHERE IB.val = ? + 1 (123, 1000) (int:999) B>(int:id, int:val)

—

Attribute(val) +
1000 ,/’__/,/ \\~—~\\
Parameter(0) Constant(1)
999 1
CMU 15-445/645 (Fall 2017) &= & CARNEGIE MELLON

31 %2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXPRESSION
EVALUATION

Execution Context

SELECT * FROM B Current Tuple Query Parameters Table Schema
WHERE IB.val = ? + 1 (123, 1000) (int:999) B>(int:id, int:val)

’,,————’/'t;;e ~~

Attribute(val)
1000 / 1999\
Parameter(0) Constant(1)
999 1
CMU 15-445/645 (Fall 2017) &= & CARNEGIE MELLON

. "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXPRESSION
EVALUATION

Evaluating predicates in this

manner is slow.

— The DBMS traverses the tree and for
each node that it visits it has to figure
out what the operator needs to do.

Consider WHERE 1=1

A better approach is to just

evaluate the expression directly.
— Think JIT compilation

CMU 15-445/645 (Fall 2017)

32

//

\

Constant(1)

Constant(1)

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONCLUSION

The same query plan be executed
in multiple ways.

(Most) DBMSs will want to use an
index scan as much as possible.

Expression trees are flexible but
slow.

CMU 15-445/645 (Fall 2017)

33

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PROJECT #2

You will build a single-threaded

B+tree index.
— Page Layout
— Data Structure
— lterator.

We define the API for you. You

need to provide the method Due Date:
implementations. Wednesday Oct 25t

http://15445.courses.cs.cmu.edu/fall2017/project2/

. @ & CARNEGIE MELLON
gz/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/fall2017/project2/

THINGS TO NOTE

Do not change any file other than
the six that you have to hand it.

We will provide an updated source
tarball. You will need to copy over
your files from Project #1.

Post your questions on Canvas or

come to TA office hours.
— We will not help you debug.

CMU 15-445/645 (Fall 2017 @ & CARNEGIE MELLON
35 ") ="z DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PLAGIARISM WARNING

Your project implementation must

be your own work.

— You may not copy source code from
other groups or the web.

— Do not publish your implementation
on Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic
Inteqgrity for additional information.

MU 15-445/645 (Eall 2017) & & CARNEGIE MELLON
S e ot %2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://www.cmu.edu/policies/documents/Academic Integrity.htm

NEXT CLASS

More query execution
— External Merge Sort
— Join Algorithms

C_g CARNEGIE MELLON

g;\/IU 15-445/645 (Fall 2017) L 2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

