
Database Systems
15-445/15-645
Fall 2017

Andy Pavlo
Computer Science Dept.
Carnegie Mellon Univ.

Lecture #11

Sorting & Joins



CMU 15-445/645 (Fall 2017)

ADMINISTRIVIA

Homework #3 is due TODAY @ 11:59pm

Homework #4 is due Wednesday 
October 11th @ 11:59pm

2



CMU 15-445/645 (Fall 2017)

STATUS

We will continue our discussion 
on how the DBMS executes 
queries.

We will focus on a couple of 
frequently used relational 
operators.

3

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager



CMU 15-445/645 (Fall 2017)

TODAY'S AGENDA

Sorting algorithms
Join algorithms

4



CMU 15-445/645 (Fall 2017)

WHY DO WE NEED TO SORT?

Relational model
→ Tuples in a table have no specific order

SELECT...ORDER BY
→ Users often want to retrieve tuples in a specific order
→ Trivial to support duplicate elimination (DISTINCT)
→ Bulk loading sorted tuples into a B+ tree index is faster

SELECT...GROUP BY
→ Sort-merge join algorithm

5



CMU 15-445/645 (Fall 2017)

SORTING ALGORITHMS

Data fits in memory: Then we can use a 
standard sorting algorithm like quick-sort. 

Data does not fit in memory: Sorting data 
that does not fit in main-memory is called 
external sorting.

6



CMU 15-445/645 (Fall 2017)

EXTERNAL MERGE SORT

A frequently used external sorting algorithm.

Idea: Hybrid sort-merge strategy
→ Sorting phase: Sort small chunks of data that fit in 

main-memory, and then write back the sorted data 
to a file on disk.

→ Merge phase: Combine sorted sub-files into a 
single larger file.

7



CMU 15-445/645 (Fall 2017)

OVERVIEW

Let’s start with a simple example:
2-way external merge sort.
Later generalize it to k-way external 
merge sort.

Files are broken up into N pages.
The DBMS has a finite number of B 
fixed-size buffers.

8



CMU 15-445/645 (Fall 2017)

2-WAY EXTERNAL MERGE SORT

Pass 0:
→ Reads every B pages of the table into memory
→ Sorts them, and writes them back to disk.
→ Each sorted set of pages is a run

Pass 1,2,3,…:
→ Recursively merges pairs of runs into runs twice as long
→ Uses three buffer pages (two for input pages, one for output)

9

Memory Memory Memory

Disk



CMU 15-445/645 (Fall 2017)

2-WAY EXTERNAL MERGE SORT

In each pass, we read and 
write each page in file.
Number of passes
= 1 + ⌈ log2 N ⌉
Total I/O cost
= 2N · (# of passes)

Divide and conquer strategy:
Sort sub-files and merge

INPUT FILE

1-PAGE RUNS

2-PAGE RUNS

4-PAGE RUNS

8-PAGE RUNS

PASS
#0

PASS
#1

PASS
#2

PASS
#3

3 , 4 2 , 6 4 , 9 7 , 8 5 , 6 1 , 3 2

2 , 3
4 , 6

4 , 7
8 , 9

1 , 3
5 , 6 2

1 , 2
3 , 5
6

1 , 2
2 , 3
3 , 4
4 , 5
6 , 6
7 , 8
9

6 , 2 9 , 4 8 , 7 5 , 6 3 , 1 23 , 4

4 , 4
6 , 7
8 , 9

2 , 3

NULL

10



CMU 15-445/645 (Fall 2017)

2-WAY EXTERNAL MERGE SORT

This algorithm only requires three
buffer pages (B=3).

Even if we have more buffer space 
available (B>3), it does not effectively 
utilize them.

Let’s next generalize the algorithm to 
make use of extra buffer space.

11



CMU 15-445/645 (Fall 2017)

GENERAL EXTERNAL MERGE SORT

Pass 0: Use B buffer pages. 
Produce ⌈N / B⌉ sorted runs of size B
Pass 1,2,3,…: Merge B-1 runs. (K-way merge)

Number of passes = 1 + ⌈ logB-1⌈N / B⌉ ⌉
Total I/O Cost = 2N·(# of passes)

12



CMU 15-445/645 (Fall 2017)

K-WAY MERGE ALGORITHM

Input: K sorted sub-arrays
Efficiently computes the minimum 
element of all K sub-arrays
Repeatedly transfers that element to 
output array

Internally maintains a heap to efficiently 
compute minimum element
Time Complexity = O(N log2K)

13



CMU 15-445/645 (Fall 2017)

EXAMPLE

Sort 108 page file with 5 buffer pages: N=108, B=5
→ Pass 0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each (last run 

is only 3 pages) 
→ Pass 1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each (last run 

is only 8 pages)
→ Pass 2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, 80 pages and 28 pages
→ Pass 3: Sorted file of 108 pages

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉à 4 passes

14



CMU 15-445/645 (Fall 2017)

USING B+TREES

Scenario: Table that must be sorted already 
has a B+ tree index on the sort attribute(s).
Can we accelerate sorting?

Idea: Retrieve tuples in desired sort order by 
simply traversing the leaf pages of the tree.
Cases to consider:
→ Clustered B+ tree
→ Unclustered B+ tree

15



CMU 15-445/645 (Fall 2017)

CASE 1 :  CLUSTERED B+TREE

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Traverse to the left-most leaf 
page, and then retrieve tuples 
from all leaf pages.

Always better than external 
sorting. Good idea!

16

101 102 103 104



CMU 15-445/645 (Fall 2017)

CASE 2:  UNCLUSTERED B+TREE

Chase each pointer to the 
page that contains the data.

In general, one I/O per data 
record. Bad idea!!

17

101 102 103 104

(Directs search)

Data Records

Index

Data Entries
("Sequence set")



CMU 15-445/645 (Fall 2017)

ALTERNATIVES TO SORTING

What if we don’t need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Can we remove duplicates without sorting?
→ Hashing is a better alternative in this scenario
→ Only need to remove duplicates, no need for ordering
→ Can be computationally cheaper than sorting!

18



CMU 15-445/645 (Fall 2017)

SORTING:  SUMMARY

External merge sort minimizes disk I/O
→ Pass 0: Produces sorted runs of size B
→ Later Passes: Recursively merge runs

Next week: Query optimizer picks a 
sorting or hashing operator based on 
ordering requirements in the query plan.

19



CMU 15-445/645 (Fall 2017)

TODAY'S AGENDA

Sorting algorithms
Join algorithms

20



CMU 15-445/645 (Fall 2017)

WHY DO WE NEED TO JOIN?

Relational model
→ Unnecessary repetition of information must be avoided
→ We decompose tables using normalization theory

SELECT...JOIN
→ Reconstruct original tables via joins
→ No information loss

21



CMU 15-445/645 (Fall 2017)
22

Anybody here 
into sailing?



CMU 15-445/645 (Fall 2017)

SID BID DAY RNAME
6 103 2014-02-01 Matlock
1 102 2014-02-02 Macgyver
2 101 2014-02-02 A-team
1 101 2014-02-01 Dallas

SAILING CLUB DATABASE

SAILORS RESERVES
SID SNAME RATING AGE
1 Andy 999 45.0
3 Obama 50 52.0
2 Tupac 32 26.0
6 Bieber 10 19.0

Sailors(sid: int, sname: varchar, rating: int, age: real)
Reserves(sid: int, bid: int, day: date, rname: varchar)

23



CMU 15-445/645 (Fall 2017)

SAILING CLUB DATABASE

Each tuple is 50 bytes
80 tuples per page
500 pages total
N=500, pS=80

Each tuple is 40 bytes
100 tuples per page
1000 pages total
M=1000, pR=100

SID BID DAY RNAME
6 103 2014-02-01 Matlock
1 102 2014-02-02 Macgyver
2 101 2014-02-02 A-team
1 101 2014-02-01 Dallas

SAILORS RESERVES
SID SNAME RATING AGE
1 Andy 999 45.0
3 Obama 50 52.0
2 Tupac 32 26.0
6 Bieber 10 19.0

24



CMU 15-445/645 (Fall 2017)

JOIN VS CROSS-PRODUCT

R⨝S is very common and thus must be 
carefully optimized.
R×S followed by a selection is inefficient 
because the cross-product is large.

There are many algorithms for reducing join 
cost, but no particular algorithm works well in 
all scenarios.

25



CMU 15-445/645 (Fall 2017)

JOIN ALGORITHMS

Join algorithms we will cover in today’s lecture:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join
→ Hash Join (next lecture)

26



CMU 15-445/645 (Fall 2017)

I /O COST ANALYSIS

Assume:
→ M pages in R, pR tuples per page, m tuples total
→ N pages in S, pS tuples per page, n tuples total
→ In our examples, R is Reserves and S is Sailors.

We will consider more complex join conditions later.
Cost metric:  # of I/Os We will ignore 

output costs

27



CMU 15-445/645 (Fall 2017)

JOIN QUERY EXAMPLE

Assume that we don’t know 
anything about the tables and 
we don’t have any indexes.

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

28



CMU 15-445/645 (Fall 2017)

JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join

29



CMU 15-445/645 (Fall 2017)

SIMPLE NESTED LOOP JOIN 

R(A,..)

S(A, ......)

foreach tuple r of R
foreach tuple s of S
output, if r and s match

30



CMU 15-445/645 (Fall 2017)

foreach tuple r of R
foreach tuple s of S
output, if r and s match

SIMPLE NESTED LOOP JOIN
Outer table

Inner table

R(A,..)

S(A, ......)

31



CMU 15-445/645 (Fall 2017)

SIMPLE NESTED LOOP JOIN

Why is this algorithm bad?
→ For every tuple in R, it scans S once 

Number of disk accesses
→ Cost: M + (m · N)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

32



CMU 15-445/645 (Fall 2017)

Actual number:
→ M + (m · N) = 1000 + (100 · 1000) · 500 ≈ 50 M I/Os
→ At 0.1 ms/IO, Total time ≈ 1.3 hours

What if smaller table (S) is used as the outer table?
→ N + (n · M) = 500 + (80 ·500) · 1000 ≈ 40 M I/Os
→ Slightly better.

What assumptions are being made here?
→ 2 buffers for streaming the tables (and 1 for storing output)

SIMPLE NESTED LOOP JOIN

33



CMU 15-445/645 (Fall 2017)

JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join

34



CMU 15-445/645 (Fall 2017)

BLOCK NESTED LOOP JOIN

read block from R
read block from S
output, if a pair of tuples match

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

35



CMU 15-445/645 (Fall 2017)

BLOCK NESTED LOOP JOIN

This algorithm performs fewer disk accesses.
→ For every block in R, it scans S once

Number of disk accesses
→ Cost: M + (M·N)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

36



CMU 15-445/645 (Fall 2017)

BLOCK NESTED LOOP JOIN

Algorithm Optimizations:
Which one should be the outer table?
→ The smaller table (in terms of # of pages)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

37



CMU 15-445/645 (Fall 2017)

BLOCK NESTED LOOP JOIN

Actual number:
→ M + (M·N) = 1000 + (1000 · 500) ≈ 0.5 M I/Os
→ At 0.1 ms/IO, Total time ≈ 50 seconds

What if we have B buffers available?
→ Use B-2 buffers for scanning outer table,
→ Use 1 buffer to scanning inner table, 1 buffer for storing output

38



CMU 15-445/645 (Fall 2017)

BLOCK NESTED LOOP JOIN

read B-2 blocks from R
read block from S
output, if a pair of tuples match

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

39



CMU 15-445/645 (Fall 2017)

BLOCK NESTED LOOP JOIN

This algorithm uses B-2 buffers for scanning M.
Number of disk accesses
→ Cost: M + ( éM/(B-2)ù ·N)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

40



CMU 15-445/645 (Fall 2017)

BLOCK NESTED LOOP JOIN

What if the outer relation completely fits in memory (B>M+2)?
→ Cost: M + N = 1000 + 500 = 1500 I/Os
→ At 0.1ms/IO, Total time ≈ 0.15 seconds

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

41



CMU 15-445/645 (Fall 2017)

JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join

42



CMU 15-445/645 (Fall 2017)

INDEX NESTED LOOP JOIN

Why do basic nested loop joins suck?
→ For each tuple in the outer table, we have to do a 

sequential scan to check for a match in the inner table.

Can we accelerate the join using an index?
Use an index to find inner table matches.
→ We could use an existing index for the join. 
→ Or even build one on the fly.

43



CMU 15-445/645 (Fall 2017)

INDEX NESTED LOOP JOIN

foreach tuple r of R
foreach tuple s of S, where ri = sj
output, if ri and sj match

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

Index Probe

44



CMU 15-445/645 (Fall 2017)

INDEX NESTED LOOP JOIN

Number of disk accesses
→ Cost: M + ( m · C )

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

Index Look-up Cost

45



CMU 15-445/645 (Fall 2017)

NESTED LOOP JOIN:  SUMMARY

Pick the smaller table as the outer table.
Buffer as much of the outer table in memory 
as possible.
Loop over the inner table or use an index.

46



CMU 15-445/645 (Fall 2017)

JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join

47



CMU 15-445/645 (Fall 2017)

SORT-MERGE JOIN

Sort Phase: First sort both tables on the join 
attribute.
Merge Phase: Then scan the two sorted tables 
in parallel, and emit matching tuples.

48



CMU 15-445/645 (Fall 2017)

WHEN IS  SORT-MERGE JOIN USEFUL?

This join algorithm is useful if:
→ One or both tables are already sorted on join key
→ Output must be sorted on join key

Sorting: Might be achieved either by an 
explicit sort step, or by scanning the relation 
using an index on the join key.

49



CMU 15-445/645 (Fall 2017)

SORT-MERGE JOIN EXAMPLE

Sort! Sort!

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

SID BID DAY RNAME

6 103 2014-02-01 Matlock

1 102 2014-02-02 Macgyver

2 101 2014-02-02 A-team

1 101 2014-02-01 Dallas

SID SNAME RATING AGE

1 Andy 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

SID BID DAY RNAME

1 102 2014-02-02 Macgyver

1 101 2014-02-01 Dallas

2 101 2014-02-02 A-team

6 103 2014-02-01 Matlock

SID SNAME RATING AGE

1 Andy 999 45.0

2 Tupac 32 26.0

3 Obama 50 52.0

6 Bieber 10 19.0

50



CMU 15-445/645 (Fall 2017)

SORT-MERGE JOIN EXAMPLE

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

SID BID DAY RNAME

1 102 2014-02-02 Macgyver

1 101 2014-02-01 Dallas

2 101 2014-02-02 A-team

6 103 2014-02-01 Matlock

SID SNAME RATING AGE

1 Andy 999 45.0

2 Tupac 32 26.0

3 Obama 50 52.0

6 Bieber 10 19.0

Merge! Merge!

✔
✔
✔
✔

51



CMU 15-445/645 (Fall 2017)

SORT-MERGE JOIN

Number of disk accesses
→ Cost: [ (2M · logM/logB) + (2N · logN/logB) ] +  [ M + N ]

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

Sort Cost Merge Cost

52



CMU 15-445/645 (Fall 2017)

SORT-MERGE JOIN

With 100 buffer pages, both R and S can 
be sorted in 2 passes:
→ Cost: 7,500 I/Os
→ At 0.1 ms/IO, Total time ≈ 0.75 seconds

53



CMU 15-445/645 (Fall 2017)

SORT-MERGE JOIN

Worst case for merging phase?
→ When the join attribute of all of the tuples in both relations 

contain the same value.
→ Cost: (M · N) + (sort cost)

Andy: Don’t worry kids! This is unlikely!

54



CMU 15-445/645 (Fall 2017)

JOIN ALGORITHMS:  SUMMARY

JOIN ALGORITHM I/O COST TOTAL TIME

Simple Nested Loop Join M + (m·N) 1.3 hours

Block Nested Loop Join M + (M·N) 50 seconds

Index Nested Loop Join M + (m·log N) 20 seconds

Sort Merge Join M + N + (sort cost) 0.75 seconds

55



CMU 15-445/645 (Fall 2017)

JOIN TYPES

LEFT	OUTER	
JOIN

LEFT	OUTER	
JOIN	WITH
EXCLUSION

INNER	
JOIN

FULL	OUTER	
JOIN

RIGHT	OUTER	
JOIN

RIGHT	OUTER	
JOIN	WITH
EXCLUSION

FULL	OUTER	
JOIN	WITH
EXCLUSION

56



CMU 15-445/645 (Fall 2017)

CASE STUDY:  POSTGRESQL

Employs a state machine to track the join algorithm’s state
→ At each state, does something and then proceeds to another state
→ State transitions depend on join type

JOIN
ALGORITHM

STATES

57



CMU 15-445/645 (Fall 2017)

CONCLUSION

There are many join algorithms.
→ Illustrates the sophistication of the technology 

underlying database systems.

Picking a join algorithm is challenging.
→ Index Nested Loop when selectivity is small.
→ Sort-Merge when joining whole tables.

Stay tuned for more details in next week’s 
query optimization lecture.

58



CMU 15-445/645 (Fall 2017)

RECAP

Sorting algorithms
Join algorithms

59



CMU 15-445/645 (Fall 2017)

NEXT CLASS

Join Algorithms: Hash Join
More Exotic Join Types: Semi, Anti, Lateral
Aggregation Algorithms

60


