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ADMINISTRIVIA

Homework #3 is due TODAY @ 11:59pm

Homework #4 is due Wednesday 
October 11th @ 11:59pm
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STATUS

We will continue our discussion 
on how the DBMS executes 
queries.

We will focus on a couple of 
frequently used relational 
operators.
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TODAY'S AGENDA

Sorting algorithms
Join algorithms
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WHY DO WE NEED TO SORT?

Relational model
→ Tuples in a table have no specific order

SELECT...ORDER BY
→ Users often want to retrieve tuples in a specific order
→ Trivial to support duplicate elimination (DISTINCT)
→ Bulk loading sorted tuples into a B+ tree index is faster

SELECT...GROUP BY
→ Sort-merge join algorithm
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SORTING ALGORITHMS

Data fits in memory: Then we can use a 
standard sorting algorithm like quick-sort. 

Data does not fit in memory: Sorting data 
that does not fit in main-memory is called 
external sorting.
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EXTERNAL MERGE SORT

A frequently used external sorting algorithm.

Idea: Hybrid sort-merge strategy
→ Sorting phase: Sort small chunks of data that fit in 

main-memory, and then write back the sorted data 
to a file on disk.

→ Merge phase: Combine sorted sub-files into a 
single larger file.
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OVERVIEW

Let’s start with a simple example:
2-way external merge sort.
Later generalize it to k-way external 
merge sort.

Files are broken up into N pages.
The DBMS has a finite number of B 
fixed-size buffers.
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2-WAY EXTERNAL MERGE SORT

Pass 0:
→ Reads every B pages of the table into memory
→ Sorts them, and writes them back to disk.
→ Each sorted set of pages is a run

Pass 1,2,3,…:
→ Recursively merges pairs of runs into runs twice as long
→ Uses three buffer pages (two for input pages, one for output)
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2-WAY EXTERNAL MERGE SORT

In each pass, we read and 
write each page in file.
Number of passes
= 1 + ⌈ log2 N ⌉
Total I/O cost
= 2N · (# of passes)

Divide and conquer strategy:
Sort sub-files and merge

INPUT FILE

1-PAGE RUNS

2-PAGE RUNS

4-PAGE RUNS

8-PAGE RUNS

PASS
#0

PASS
#1

PASS
#2

PASS
#3

3 , 4 2 , 6 4 , 9 7 , 8 5 , 6 1 , 3 2

2 , 3
4 , 6

4 , 7
8 , 9

1 , 3
5 , 6 2

1 , 2
3 , 5
6

1 , 2
2 , 3
3 , 4
4 , 5
6 , 6
7 , 8
9

6 , 2 9 , 4 8 , 7 5 , 6 3 , 1 23 , 4

4 , 4
6 , 7
8 , 9

2 , 3

NULL
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2-WAY EXTERNAL MERGE SORT

This algorithm only requires three
buffer pages (B=3).

Even if we have more buffer space 
available (B>3), it does not effectively 
utilize them.

Let’s next generalize the algorithm to 
make use of extra buffer space.
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GENERAL EXTERNAL MERGE SORT

Pass 0: Use B buffer pages. 
Produce ⌈N / B⌉ sorted runs of size B
Pass 1,2,3,…: Merge B-1 runs. (K-way merge)

Number of passes = 1 + ⌈ logB-1⌈N / B⌉ ⌉
Total I/O Cost = 2N·(# of passes)
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K-WAY MERGE ALGORITHM

Input: K sorted sub-arrays
Efficiently computes the minimum 
element of all K sub-arrays
Repeatedly transfers that element to 
output array

Internally maintains a heap to efficiently 
compute minimum element
Time Complexity = O(N log2K)
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EXAMPLE

Sort 108 page file with 5 buffer pages: N=108, B=5
→ Pass 0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each (last run 

is only 3 pages) 
→ Pass 1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each (last run 

is only 8 pages)
→ Pass 2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, 80 pages and 28 pages
→ Pass 3: Sorted file of 108 pages

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉à 4 passes
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USING B+TREES

Scenario: Table that must be sorted already 
has a B+ tree index on the sort attribute(s).
Can we accelerate sorting?

Idea: Retrieve tuples in desired sort order by 
simply traversing the leaf pages of the tree.
Cases to consider:
→ Clustered B+ tree
→ Unclustered B+ tree
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CASE 1 :  CLUSTERED B+TREE

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Traverse to the left-most leaf 
page, and then retrieve tuples 
from all leaf pages.

Always better than external 
sorting. Good idea!
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CASE 2:  UNCLUSTERED B+TREE

Chase each pointer to the 
page that contains the data.

In general, one I/O per data 
record. Bad idea!!
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ALTERNATIVES TO SORTING

What if we don’t need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Can we remove duplicates without sorting?
→ Hashing is a better alternative in this scenario
→ Only need to remove duplicates, no need for ordering
→ Can be computationally cheaper than sorting!
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SORTING:  SUMMARY

External merge sort minimizes disk I/O
→ Pass 0: Produces sorted runs of size B
→ Later Passes: Recursively merge runs

Next week: Query optimizer picks a 
sorting or hashing operator based on 
ordering requirements in the query plan.
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TODAY'S AGENDA

Sorting algorithms
Join algorithms
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WHY DO WE NEED TO JOIN?

Relational model
→ Unnecessary repetition of information must be avoided
→ We decompose tables using normalization theory

SELECT...JOIN
→ Reconstruct original tables via joins
→ No information loss
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Anybody here 
into sailing?
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SID BID DAY RNAME
6 103 2014-02-01 Matlock
1 102 2014-02-02 Macgyver
2 101 2014-02-02 A-team
1 101 2014-02-01 Dallas

SAILING CLUB DATABASE

SAILORS RESERVES
SID SNAME RATING AGE
1 Andy 999 45.0
3 Obama 50 52.0
2 Tupac 32 26.0
6 Bieber 10 19.0

Sailors(sid: int, sname: varchar, rating: int, age: real)
Reserves(sid: int, bid: int, day: date, rname: varchar)
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SAILING CLUB DATABASE

Each tuple is 50 bytes
80 tuples per page
500 pages total
N=500, pS=80

Each tuple is 40 bytes
100 tuples per page
1000 pages total
M=1000, pR=100

SID BID DAY RNAME
6 103 2014-02-01 Matlock
1 102 2014-02-02 Macgyver
2 101 2014-02-02 A-team
1 101 2014-02-01 Dallas

SAILORS RESERVES
SID SNAME RATING AGE
1 Andy 999 45.0
3 Obama 50 52.0
2 Tupac 32 26.0
6 Bieber 10 19.0
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JOIN VS CROSS-PRODUCT

R⨝S is very common and thus must be 
carefully optimized.
R×S followed by a selection is inefficient 
because the cross-product is large.

There are many algorithms for reducing join 
cost, but no particular algorithm works well in 
all scenarios.
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JOIN ALGORITHMS

Join algorithms we will cover in today’s lecture:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join
→ Hash Join (next lecture)
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I /O COST ANALYSIS

Assume:
→ M pages in R, pR tuples per page, m tuples total
→ N pages in S, pS tuples per page, n tuples total
→ In our examples, R is Reserves and S is Sailors.

We will consider more complex join conditions later.
Cost metric:  # of I/Os We will ignore 

output costs
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JOIN QUERY EXAMPLE

Assume that we don’t know 
anything about the tables and 
we don’t have any indexes.

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
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JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join
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SIMPLE NESTED LOOP JOIN 

R(A,..)

S(A, ......)

foreach tuple r of R
foreach tuple s of S
output, if r and s match
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foreach tuple r of R
foreach tuple s of S
output, if r and s match

SIMPLE NESTED LOOP JOIN
Outer table

Inner table

R(A,..)

S(A, ......)
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SIMPLE NESTED LOOP JOIN

Why is this algorithm bad?
→ For every tuple in R, it scans S once 

Number of disk accesses
→ Cost: M + (m · N)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)
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Actual number:
→ M + (m · N) = 1000 + (100 · 1000) · 500 ≈ 50 M I/Os
→ At 0.1 ms/IO, Total time ≈ 1.3 hours

What if smaller table (S) is used as the outer table?
→ N + (n · M) = 500 + (80 ·500) · 1000 ≈ 40 M I/Os
→ Slightly better.

What assumptions are being made here?
→ 2 buffers for streaming the tables (and 1 for storing output)

SIMPLE NESTED LOOP JOIN
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JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join
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BLOCK NESTED LOOP JOIN

read block from R
read block from S
output, if a pair of tuples match

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)
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BLOCK NESTED LOOP JOIN

This algorithm performs fewer disk accesses.
→ For every block in R, it scans S once

Number of disk accesses
→ Cost: M + (M·N)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)
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BLOCK NESTED LOOP JOIN

Algorithm Optimizations:
Which one should be the outer table?
→ The smaller table (in terms of # of pages)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)
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BLOCK NESTED LOOP JOIN

Actual number:
→ M + (M·N) = 1000 + (1000 · 500) ≈ 0.5 M I/Os
→ At 0.1 ms/IO, Total time ≈ 50 seconds

What if we have B buffers available?
→ Use B-2 buffers for scanning outer table,
→ Use 1 buffer to scanning inner table, 1 buffer for storing output
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BLOCK NESTED LOOP JOIN

read B-2 blocks from R
read block from S
output, if a pair of tuples match

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)
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BLOCK NESTED LOOP JOIN

This algorithm uses B-2 buffers for scanning M.
Number of disk accesses
→ Cost: M + ( éM/(B-2)ù ·N)

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)
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BLOCK NESTED LOOP JOIN

What if the outer relation completely fits in memory (B>M+2)?
→ Cost: M + N = 1000 + 500 = 1500 I/Os
→ At 0.1ms/IO, Total time ≈ 0.15 seconds

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)
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JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join
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INDEX NESTED LOOP JOIN

Why do basic nested loop joins suck?
→ For each tuple in the outer table, we have to do a 

sequential scan to check for a match in the inner table.

Can we accelerate the join using an index?
Use an index to find inner table matches.
→ We could use an existing index for the join. 
→ Or even build one on the fly.
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INDEX NESTED LOOP JOIN

foreach tuple r of R
foreach tuple s of S, where ri = sj
output, if ri and sj match

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

Index Probe
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INDEX NESTED LOOP JOIN

Number of disk accesses
→ Cost: M + ( m · C )

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

Index Look-up Cost
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NESTED LOOP JOIN:  SUMMARY

Pick the smaller table as the outer table.
Buffer as much of the outer table in memory 
as possible.
Loop over the inner table or use an index.
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JOIN ALGORITHMS

Join algorithms we will cover:
→ Simple Nested Loop Join
→ Block Nested Loop Join
→ Index Nested Loop Join
→ Sort-Merge Join
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SORT-MERGE JOIN

Sort Phase: First sort both tables on the join 
attribute.
Merge Phase: Then scan the two sorted tables 
in parallel, and emit matching tuples.
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WHEN IS  SORT-MERGE JOIN USEFUL?

This join algorithm is useful if:
→ One or both tables are already sorted on join key
→ Output must be sorted on join key

Sorting: Might be achieved either by an 
explicit sort step, or by scanning the relation 
using an index on the join key.
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SORT-MERGE JOIN EXAMPLE

Sort! Sort!

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

SID BID DAY RNAME

6 103 2014-02-01 Matlock

1 102 2014-02-02 Macgyver

2 101 2014-02-02 A-team

1 101 2014-02-01 Dallas

SID SNAME RATING AGE

1 Andy 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

SID BID DAY RNAME

1 102 2014-02-02 Macgyver

1 101 2014-02-01 Dallas

2 101 2014-02-02 A-team

6 103 2014-02-01 Matlock

SID SNAME RATING AGE

1 Andy 999 45.0

2 Tupac 32 26.0

3 Obama 50 52.0

6 Bieber 10 19.0
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SORT-MERGE JOIN EXAMPLE

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

SID BID DAY RNAME

1 102 2014-02-02 Macgyver

1 101 2014-02-01 Dallas

2 101 2014-02-02 A-team

6 103 2014-02-01 Matlock

SID SNAME RATING AGE

1 Andy 999 45.0

2 Tupac 32 26.0

3 Obama 50 52.0

6 Bieber 10 19.0

Merge! Merge!

✔
✔
✔
✔
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SORT-MERGE JOIN

Number of disk accesses
→ Cost: [ (2M · logM/logB) + (2N · logN/logB) ] +  [ M + N ]

M pages,
m tuples N pages,

n tuples

R(A,..)

S(A, ......)

Sort Cost Merge Cost
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SORT-MERGE JOIN

With 100 buffer pages, both R and S can 
be sorted in 2 passes:
→ Cost: 7,500 I/Os
→ At 0.1 ms/IO, Total time ≈ 0.75 seconds
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SORT-MERGE JOIN

Worst case for merging phase?
→ When the join attribute of all of the tuples in both relations 

contain the same value.
→ Cost: (M · N) + (sort cost)

Andy: Don’t worry kids! This is unlikely!
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JOIN ALGORITHMS:  SUMMARY

JOIN ALGORITHM I/O COST TOTAL TIME

Simple Nested Loop Join M + (m·N) 1.3 hours

Block Nested Loop Join M + (M·N) 50 seconds

Index Nested Loop Join M + (m·log N) 20 seconds

Sort Merge Join M + N + (sort cost) 0.75 seconds
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JOIN TYPES

LEFT	OUTER	
JOIN

LEFT	OUTER	
JOIN	WITH
EXCLUSION

INNER	
JOIN

FULL	OUTER	
JOIN

RIGHT	OUTER	
JOIN

RIGHT	OUTER	
JOIN	WITH
EXCLUSION

FULL	OUTER	
JOIN	WITH
EXCLUSION
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CASE STUDY:  POSTGRESQL

Employs a state machine to track the join algorithm’s state
→ At each state, does something and then proceeds to another state
→ State transitions depend on join type

JOIN
ALGORITHM

STATES

57



CMU 15-445/645 (Fall 2017)

CONCLUSION

There are many join algorithms.
→ Illustrates the sophistication of the technology 

underlying database systems.

Picking a join algorithm is challenging.
→ Index Nested Loop when selectivity is small.
→ Sort-Merge when joining whole tables.

Stay tuned for more details in next week’s 
query optimization lecture.
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RECAP

Sorting algorithms
Join algorithms
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NEXT CLASS

Join Algorithms: Hash Join
More Exotic Join Types: Semi, Anti, Lateral
Aggregation Algorithms
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