| ‘ S
\\\\\\

/) ?7’7;

>

/
- / .
o/

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/fall2017/
http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #4 is due Wednesday October 111" @ 11:59pm
Mid-term Exam is on Wednesday October 18 (in class)

Project #2 is due Wednesday October 25" @ 11:59am

. @ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

@ PostgreSQL

Donate | Contact |search | search |

The world's most advanced
open source database.

» About

» Advantages

» Feature Matrix
> Awards

> Donate

» Case Studies
» Quotes

» Featured Users
» History

#» Sponsors

Servers

» Latest news

#» Upcoming events
» Press

» Licence

PostgreSQL 10 Released

Posted on 2017-10-05

The PostgreSQL Global Development Group today announced the release of PostgreSQL 10, the latest
version of the world's most advanced open source database.

A critical feature of modern workloads is the ability to distribute data across many nodes for faster
access, management, and analysis, which is also known as a "divide and conquer" strategy. The
PostgreSQL 10 release includes significant enhancements to effectively implement the divide and
conquer strategy, including native logical replication, declarative table partitioning, and improved query
parallelism.

"Our developer community focused on building features that would take advantage of modern
infrastructure setups for distributing workloads," said Magnus Hagander, a core team member of the
PostgreSQL Global Development Group. "Features such as logical replication and improved query
parallelism represent years of work and demonstrate the continued dedication of the community to
ensuring Postgres leadership as technology demands evolve."

This release also marks the change of the versioning scheme for PostgreSQL to a "x.y" format. This
means the next minor release of PostgreSQL will be 10.1 and the next major release will be 11.

Logical Replication - A publish/subscribe framework for distributing data

Logical replication extends the current replication features of PostgreSQL with the ability to send
modifications on a per-database and per-table level to different PostgreSQL databases. Users can now
fine-tune the data replicated to various database clusters and will have the ability to perform zero-

https://www.postgresql.org/about/news/1786/

LAST CLASS

External Merge Sort

Join Algorithms
— Nested Loop Join
— Sort-Merge Join

CMU 15-445/645 (Fall 2017) 9 CARNEGIE MELLON
4 w o DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN ALGORITHMS

There are essentially three

classes of join algorithms:
— Nested Loop

— Sort-Merge

— Hash

In general, we want the smaller
table to always be the outer table.

. @ & CARNEGIE MELLON
EMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR
OUTPUT

Foratuple reR andatupleseS
that match on join attributes,
concatenate rand stogether into
a new tuple.

Contents can vary:

— Depends on processing model
— Depends on storage model

— Depends on the query

CMU 15-445/645 (Fall 2017)

6

SELECT A.id, B.cdate
FROM A, B

WHERE A.id = B.id
AND B.value > 100

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR

OUTPUT: DATA SELECT A.id, B.cdate
FROM A, B

Copy the values for the attributes WHERE A.id = B.id

in outer and inner tuples into a AND B.value > 100

new output tuple.

. @ & CARNEGIE MELLON
gMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR

OUTPUT: DATA SELECT A.id, B.cdate
FROM A, B

Copy the values for the attributes WHERE A.id = B.id

in outer and inner tuples into a AND B.value > 100

new output tuple. A(id,name) B(id,value,cdate)

id value cdate

123 |abc 123 1000 ;0/16/201

10/16/201
7

123 |2000

. @ & CARNEGIE MELLON
gMU 15-445/645 (Fall 2017) :.1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR
OUTPUT: DATA

Copy the values for the attributes
in outer and inner tuples into a
new output tuple.

CMU 15-445/645 (Fall 2017)

7

SELECT A.id, B.cdate
FROM A, B

WHERE A.id = B.id
AND B.value > 100

A(id,name) B(id,value,cdate)

‘123 ‘abc \N123 10/16/201

id value cdate

1000 .
L oo [10/16/201
'LJ LIUYUY 7
A.id A.name B.id B.value B.cdate
123 abc 123 (1000 179/16/2@1
123 abc 123 (2000 178/16/291

W @ CARNEGIE MECTON
"2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR
OUTPUT: DATA

Copy the values for the attributes

in outer and inner tuples into a

new output tuple.

CMU 15-445/645 (Fall 2017)

7

SELECT A.id, B.cdate
FROM A, B

WHERE A.id = B.id
AND B.value > 100

n A.id, B.cdate

A.id A.name B.id B.value B.cdate T

7

123 |abc 123 1000 170/16/2@1
123 |abc 123 2000 107167201

N

G value>100

/

A

N
B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR

OUTPUT: DATA SELECT A.id, B.cdate
FROM A, B

Copy the values for the attributes WHERE A.id = B.id

in outer and inner tuples into a AND B.value > 160

new output tuple. TC ».id, b.cdate

Subsequent operators in the [>TqA e

query plan never need to go back \ |

to the base tables to get more O valuesioo

data. AN

. @ & CARNEGIE MELLON
SMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR
OUTPUT: RECORD IDS

Only copy the joins keys along
with the record ids of the
matching tuples.

CMU 15-445/645 (Fall 2017)

8

SELECT A.id, B.cdate
FROM A, B

WHERE A.id = B.id
AND B.value > 100

A(id,name) B(id,value,cdate)

123

id value cdate

abc 10/16/201

123 |1000 -

10/16/201
7

123 |2000

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR
OUTPUT: RECORD IDS

Only copy the joins keys along
with the record ids of the
matching tuples.

CMU 15-445/645 (Fall 2017)

8

SELECT A.id, B.cdate
FROM A, B

WHERE A.id = B.id
AND B.value > 100

A(id,name) B(id,value,cdate)

‘123 ‘abc \[>’<1 193 10/16/201

id value cdate

1000 -

10/16/201

1200 laVaVWaVWal

'LJ LUYY

7

A.id A.RID B.id B.RID

123 |A. XXX |123 |B.YYY
123 |AXXX 123 |B.ZZZ

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR
OUTPUT: RECORD IDS

Only copy the joins keys along
with the record ids of the
matching tuples.

SELECT A.id, B.cdate
FROM A, B

WHERE A.id = B.id
AND B.value > 100

T
A.id A.RID B.id B.RID T
123 |A.XXX |123 [B.YYY [>n<1,A.id=B.id
123 A. XXX 123 |[B.ZZZ \
Gvalue>100
CMU 15-445/645 (Fall 2017) Cj CARNEGIE MELLON

8

"2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN OPERATOR
OUTPUT: RECORD IDS

Only copy the joins keys along
with the record ids of the
matching tuples.

|deal for column stores because
the DBMS does not copy data that
is not need for the query.

This is called late materialization.

CMU 15-445/645 (Fall 2017)

8

SELECT A.id, B.cdate
FROM A, B

WHERE A.id = B.id
AND B.value > 100

T

1
NA.id=B.id
N

G value>100
N

A B

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

Hash Joins
Aggregations

CMU 15-445/645 (Fall 2017 @ & CARNEGIE MELLON
9 e %2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASH JOIN

If tuple r € R and a tuple s € S satisfy the
join condition, then they have the same
value for the join attributes.

If that value is hashed to some value 1,
the R tuple has to be in r; and the S
tuple in s;.

Therefore, R tuples in r; need only to
be compared with S tuples in s..

. @ & CARNEGIE MELLON
1COMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

BASIC HASH JOIN
ALGORITHM

Phase #1: Build

— Scan the outer relation and populate a
hash table using the hash function h;,
on the join attributes.

Phase #2: Probe

— Scan the inner relation and use h, on
each tuple to jump to a location in the
hash table and find a matching tuple.

C_g CARNEGIE MELLON

CMU 15-445/645 (Fall 2017
ﬂ = Y2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

BASIC HASH JOIN
ALGORITHM

build hash table H for R
foreach tuple s of S
output, if H1(sj) e HT(R)

Hash Table
R(A,..) : HT(R)

O

CMU 15-445/645 (Fall 2017)
12

S(A,..)

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

BASIC HASH JOIN
ALGORITHM

build hash table H for R
foreach tuple s of S
output, if H1(sj) e HT(R)

Hash Table
R(A,..) : HT(R)

O

S(A,..)

. @ & CARNEGIE MELLON
1CzMU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASH TABLE
CONTENTS

Key: The attribute(s) that the query is
joining the tables on.

Value: Varies per implementation.
— Depends on what the operators above the
join in the query plan expect as its input.

CMU 15-445/645 (Fall 2017) f"‘i Sﬁ'ﬁ&gyé%gﬂp

13

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASH TABLE VALUES

Approach #1: Full Tuple

— Avoid having to retrieve the outer relation's
tuple contents on a match.

— Takes up more space in memory.

Approach #2: Tuple Identifier

— |deal for column stores because the DBMS

doesn't fetch data from disk it doesn't need.

— Also better if join selectivity is low.

CMU 15-445/645 (Fall 2017)

14

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASH JOIN

What happens if we don't have
enough memory to fit the entire
hash table?

We don't want to let the buffer
pool manager swap out the hash
table pages at a random.

CMU 15-445/645 (Fall 2017 @ & CARNEGIE MELLON
15 ") ="z DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

GRACE HASH JOIN

Hash join when tables don’t fit in

memory.

— Build Phase: Hash both tables on the
join attribute into partitions.

— Probe Phase: Compares tuples in
corresponding partitions for each
table.

Named after the GRACE database
machine from Japan.

CMU 15-445/645 (Fall 2017)

16

GRACE
Univ. of Tokyo

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://museum.ipsj.or.jp/en/computer/other/0014.html
http://museum.ipsj.or.jp/en/computer/other/0014.html

CMU 15-445/645 (Fall 2017)

16

1B DB2 Analytics Accelerator -GSE Management Summit

Choosing the best fit
Key indicators

» Performance and Price/performance |eader

of deployment and administration

. Speed and ease

CLUSTRIX APPLIANCE

Clustrix Appliance

. 144GB RAM

6GB NVRAM
. 1351B Inte! SSD pr

. Low-latency \nfinipan

Named afte
machine from Japan.

PERFORMANCE [ZE)

3 Node Cluster (CX 4110)

. 24 Intel Xeon CPU cores

olected_
. (27TB raw) data cgpacny
a\

n\erconnec(

Upto 36 TB Storage
Upto 16 TB Flash

and Support

Oracle Database Appliance X322
2cores

= Clustrix

Oracle Database Appliance X3-2

Appliance Manager for Deployment, Patching,

32 cores

: ety e
Oracle Database Appliance X3-2
with Optional Storage Expansion

Exadata Eighth
Rack .
16 Database Cores

18Storage Server Cores
54 TB Storage
9 4 TB Smart Flash Cache
Smart Scan

Tokyo

Hybrid Columnar
Compression

Fully Expandable

CAPACITY [HiGHER 2 ‘-'..Q"' CARNEGIE MELLON
o

DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://museum.ipsj.or.jp/en/computer/other/0014.html
http://museum.ipsj.or.jp/en/computer/other/0014.html

GRACE HASH JOIN

Hash join when tables don’t fit in

memory.

— Build Phase: Hash both tables on the
join attribute into partitions.

— Probe Phase: Compares tuples in
corresponding partitions for each
table.

Named after the GRACE database
machine from Japan.

CMU 15-445/645 (Fall 2017)

16

GRACE
Univ. of Tokyo

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://museum.ipsj.or.jp/en/computer/other/0014.html
http://museum.ipsj.or.jp/en/computer/other/0014.html

GRACE HASH JOIN

Hash R into (O, 1, ..., max) buckets.

Hash S into the same # of buckets
with the same hash function.

R(A,.) : HT(R)

O

CMU 15-445/645 (Fall 2017)

17

S(A,..)

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

GRACE HASH JOIN

Hash R into (O, 1, ..., max) buckets.

Hash S into the same # of buckets
with the same hash function.

R(A,..)

CMU 15-445/645 (Fall 2017)
17

HT(R)

O

—

max

HT(S)

S(A,..)

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

GRACE HASH JOIN

Join each pair of matching foreach tuple r e bucket; ,

buckets between R and S. foreach tuple s e buckets,
output, if match(r, s)

v
‘‘‘‘‘‘
. .
* s®
. .
. .
* -
. es®
““““““
* .
‘‘‘‘‘
. .t
“““
.
.
.
ws®®

R(A,..) : HT(R) HT(S) F
S i IR i S(A,)
N e PP
QwE : ERe®)
: W max ' :
CMU 15-445/645 (Fall 2017) :-; CARNEGIE MELLON

8 %" DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

GRACE HASH JOIN

If the buckets don't fit in memory, then
use recursive partitioning.

Build another hash table for bucket; ;
using hash function h, (with h,#h,).

Then probe it for each tuple of the
other table's bucket at that level.

CMU 15-445/645 (Fall 2017 @ & CARNEGIE MELLON
19 ") ="z DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RECURSIVE
PARTITIONING

R(A,..)

. @ & CARNEGIE MELLON
;(I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RECURSIVE
PARTITIONING

R(A,..)
1]
1 ([|
1 [|
CMU 15-445/645 (Fall 2017) C-D CARNEGIE MELLON

20 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RECURSIVE
PARTITIONING

R(A,..)

1|

1ll

1lll

CMU 15-445/645 (Fall 2017)
20

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RECURSIVE
PARTITIONING

R(A,..)

S(A,..)

"

1ll

1lll

. @ & CARNEGIE MELLON
;(I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RECURSIVE
PARTITIONING

R(A,..) 0 0
S(A,..)
1
e
n n

. @ & CARNEGIE MELLON
;(I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RECURSIVE
PARTITIONING

R(A,..)

S(A,..)

1|

1ll

1lll

. @ & CARNEGIE MELLON
;(I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

RECURSIVE
PARTITIONING

R(A,..)

S(A,..)

1|

1ll

1lll

. @ & CARNEGIE MELLON
;(I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

GRACE HASH JOIN

Cost of hash join?
— Assume that we have enough buffers.
— Cost: 3(M+N)

Partitioning Phase:

— Read+Write both tables M=1000 N=500

— 2(M+N) I/Os 3(M+N) = 3-(1000 + 500)
Probing Phase: = 4500 I/0s

— Read both tables At 01ms/IO = 0.45 seconds
— M+N I/Os

. @ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

OBSERVATION

If the DBMS knows the size of the
outer table, then it can use a static

hash table.

— Less computational overhead for
build / probe operations.

If it doesn't know the size, then it
has to use a dynamic hash table
or allow for overflow pages.

CMU 15-445/645 (Fall 2017)

22

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

JOIN ALGORITHMS: SUMMARY

JOIN ALGORITHM I/0 COST TOTAL TIME
Simple Nested Loop Join |M + (M-N) 1.3 hours
Block Nested Loop Join |M + (M-N) 50 seconds
Index Nested Loop Join |M + (M-log N) 20 seconds
Sort-Merge Join M + N + (sort cost) |0.75 seconds
Hash Join 3(M+N) 0.45 seconds

CJ_' CARNEGIE MELLON

gg/lU 15-445/645 (Fall 2017) L e DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

AGGREGATIONS

Collapse multiple tuples into a
single scalar value.

Two implementation choices:
— Sorting
— Hashing

@ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) :-d DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SORTING

enrolled(sid,cid, grade
AGGREGATION led(s grade)
sid cid grade

- 53666 |15-445 |C
SELECT DISTINCT Cld 53688 [15-721 |A
FROM enrolled 53688 |15-826 |B
WHERE grade IN ('B','C") 53666 |15-721 |C
53655 |15-445 |C

sid cid grade cid cid
53666 |15-445|C 15-445 15-445
‘ 53688 [15-826[8 ‘ 15-826 ‘ 15-445
o 53666 15-721|C 15-721 15-721
Filter c36es 1e—aaslc Remove 15-445 Sort 15-826

Columns

@ & CARNEGIE MELLON
CMU 15-445/645 (Fall 2017) » o
e @ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SORTING

enrolled(sid,cid, grade
AGGREGATION led(s grade)
sid cid grade

- 53666 |15-445 |C
SELECT DISTINCT Cld 53688 [15-721 |A
FROM enrolled 53688 |15-826 |B
WHERE grade IN ('B','C") 53666 |15-721 |C
53655 |15-445 |C

sid cid grade =9
53666 |15-445|C 15-445

15-445
‘ 53688 |15-826|B ‘ 15-826 ‘ 15445 :
o 53666 |15-721|C 15-721 15-721
Filter 22 Remove [i.s] Sort [
Columns Eliminate
Dupes
CMU 15-445/645 (Fall 2017) Q CARNEGIE MELLON

e "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SORTING VS. HASHING

What if we don’t need the order of

the sorted data?

— Forming groups in GROUP BY
— Removing duplicates in DISTINCT

Hashing does this!

— And may be cheaper than sorting!

— But what if table doesn’t fit in
memory?

CMU 15-445/645 (Fall 2017)

27

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING AGGREGATE

Populate an ephemeral hash table
as the DBMS scans the table.

For each record, check whether
there is already an entry in the

hash table:

— DISTINCT: Discard duplicate.

— GROUP BY: Perform aggregate
computation.

Two phase approach.

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING AGGREGATE
PHASE #1: PARTITION

Use a hash function h, to split

tuples into partitions on disk.

— We know that all matches live in the
same partition.

— Partitions are "spilled" to disk via
output buffers.

Assume that we have B buffers.

CMU 15-445/645 (Fall 2017 @ & CARNEGIE MELLON
29 ") ="z DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING AGGREGATE
PHASE #1: PARTITION

SELECT DISTINCT cid
FROM enrolled

WHERE grade IN ('B','C")

53666 [15-445

53688 [15-826

Filter 53666 [15-721

53655 |[15-445

CMU 15-445/645 (Fall 2017)
30

)

Remove
Columns

enrolled(sid,cid, grade)

cid
15-445

sid cid grade
53666 [15-445 |[C
53688 [15-721 |A
53688 |15-826 |B
53666 [15-721 |C
53655 [15-445 |C

15-826

15-721

15-445

B-1 partitions

15-445

15-826

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING AGGREGATE
PHASE #2: REHASH

For each partition on disk:

— Read it into memory and build an in-
memory hash table based on a
second hash function h,.

— Then go through each bucket of this
hash table to bring together matching
tuples.

This assumes that each partition
fits in memory.

. @ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING AGGREGATE

enrolled(sid, cid, grade
PHASE #2: REHASH led(s grade)
sid cid grade

: 53666 |15-445 |C
SELECT DISTINCT Cld 53688 15-721 |A
FROM enrolled 53688 |15-826 |B
WHERE grade IN ('B','C") 53666 |15-721 |C
53655 |15-445 |C

I Hash Table
15-445 » Key |Value cid
XXX__|15-445 e
Phase #1 | [137826 » Yyy |15-826 - P
Buckets 22z |15-721 15-826

15—7;1 ,‘ »

. @ & CARNEGIE MELLON
;\/IU 15-445/645 (Fall 2017) :.1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

COST ANALYSIS

How big of a table can we hash using this

approach?
— B-1 "spill partitions" in Phase #1
— Each should be no more than B blocks big

Answer: B« (B-1)
— A table of N blocks needs about sqrt(N) buffers
— Assumes hash distributes records evenly!
Use a "fudge factor" f>1 for that: we need
Besqrt(feN)

. @ & CARNEGIE MELLON
%\/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

COST ANALYSIS

If the hash table doesn't fit into
memory, then we can use
recursive partitioning again.

— In the ReHash Phase, if a partition 1 is
bigger than B, then recurse.

— Pretend that 1 is a table we need to
hash, run the Partitioning Phase on 1,
and then the ReHash Phase on each
of its (sub)partitions

C_g CARNEGIE MELLON

gz/lu 15-445/645 (Fall 2017) L ” DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SORTING VS. HASHING

We can hash a table of size N blocks in
sqrt(N) space.

How big of a table can we sort in 2

passes?

— Get N/B sorted runs after Pass O

— Can merge all runs in Pass 1if N/B < B-1

— Thus, we (roughly) require: N < B2

— We can sort a table of size N blocks in about
space sqrt(N)

CMU 15-445/645 (Fall 2017)

35

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SORTING VS. HASHING

Choice of sorting vs. hashing is subtle
and depends on optimizations done in
each case.

We already discussed the optimizations

for sorting:

— Chunk I/O into large blocks to amortize
seek+RD costs.

— Double-buffering to overlap CPU and I/QO.

. @ & CARNEGIE MELLON
;IS\/IU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING
SUMMARIZATION

Combine the summarization into
the hashing process.

Maintain running totals for each
group as you build the hash table.

. @ & CARNEGIE MELLON
gvlu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING
SUMMARIZATION

During the ReHash phase, store pairs of
the form (GroupKey»RunningVal)

When we want to insert a new tuple

into the hash table:

— If we find a matching GroupKey, just update
the RunningVal appropriately

— Else insert a new GroupKey»RunningVal

C_a CARNEGIE MELLON

g;/IU 15-445/645 (Fall 2017) L = DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

HASHING
SUMMARIZATION

Running Totals

SELECT cid, AVG(s.gpa)

WHERE s.sid = e.sid
GROUP BY cid

FROM student AS s, enrolled AS e

AVG(col) » (COUNT,SUM)
MIN(col) » (MIN)
MAX(col) » (MAX)
SUM(col) =» (SUM)

15-445

15-445

Phase #1 | [1278%° 4‘ »
Buckets

15-721 ‘ »

CMU 15-445/645 (Fall 2017)
39

COUNT(col) » (COUNT)

Hash Table Final Result

cid___ AVG(gpa)

XXX

YYY

15-445>(2,7.32) » 15-445 (3.66
15-826+(1,3.33) 15-826 [3.33

77

15-721>(1,2.89) 15-721 [2.89

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONCLUSION

Hashing is almost always better than
sorting for operator execution.

Caveats:

— Sorting is better on non-uniform data.

— Sorting is better when result needs to be
sorted.

Good DBMSs use either or both.

. @ & CARNEGIE MELLON
ZMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

NEXT CLASS

How the DBMS decides what
algorithm to use for each operator
in @ query plan.

. @ & CARNEGIE MELLON
Z;\/IU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

