1versi

Carnegie Mellon Un



http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/fall2017/
http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #2 is due Wednesday October 25" @ 11:59am

Exams are available to view during my office hours.
— Bring your CMU ID.

— You are not allowed to take it with you.

— Take a photo of any page that you want regraded.

. @ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXTRA CREDIT (OPTIONAL)

We are building an open-source
database benchmarking framework.

Pick a DBMS that you want to try.
— Must support transactions
— Must support SQL/JDBC

Get a benchmark to run on it.
Get 10% extra credit.

http://oltpbenchmark.com

. @ & CARNEGIE MELLON
ZMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://github.com/oltpbenchmark/oltpbench
http://oltpbenchmark.com/

DATABASE TALKS

Oracle In-Memory Database ) ‘
— Tuesday Oct 24" @ 6pm RACLE
— GHC 6115

Battery Ventures Talk B \/

— Wednesday Oct 25" @ 4:30pm

_, GHC 4405 Battery Ventures
Kdb Time-series DB Talk I(x

— Thursday @ Oct 26" @ 12:00pm

— CIC 4t Floor

. @ & CARNEGIE MELLON
gMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

OBSERVATION

Until now, we have assumed that all of
the logic for an application is located in
the application itself.

The application has a "conversation"

with the DBMS to store/retrieve data.
— Protocols: JDBC, ODBC

C_g CARNEGIE MELLON

SMU 15-445/645 (Fall 2017) L e DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONVERSATIONAL
DATABASE API

Application

‘BEGIN

SQL
Program Logic
SQL
Program Logic

COMMIT

. @ & CARNEGIE MELLON
gMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONVERSATIONAL
DATABASE API

Application o IP:;Jrser
anner
Optimizer
BEGIN e — Query Execution
Program Logic

SQL
Program Logic

COMMIT

CMU 15-445/645 (Fall 2017)

@ & CARNEGIE MELLON
8

"2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONVERSATIONAL
DATABASE API

Application o IP:;Jrser
anner
Optimizer
BEGIN e — Query Execution
‘ Program Logic

SQL
Program Logic

COMMIT

CMU 15-445/645 (Fall 2017)

@ & CARNEGIE MELLON
8

"2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONVERSATIONAL
DATABASE API

Application o IP:;Jrser
anner
Optimizer
BEGIN e — Query Execution
Program Logic
SQL T——

‘ Program Logic

COMMIT

CMU 15-445/645 (Fall 2017)

@ & CARNEGIE MELLON
8

"2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONVERSATIONAL
DATABASE API

Application o IP:;:rser
anner
Optimizer
BEGIN e — Query Execution
Program Logic
SQL T——

Program Logic

: —
‘COMMIT

CMU 15-445/645 (Fall 2017)

@ & CARNEGIE MELLON
8

"2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EMBEDDED DATABASE
LOGIC

What if we could move complex
application logic into the DBMS to
avoid multiple network round-trips?

Potential Benefits
— Efficiency
— Reuse

C_g CARNEGIE MELLON

SMU 15-445/645 (Fall 2017) L e DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

User-defined Functions
Stored Procedures
Triggers

Change Notifications
User-defined Types
Views

CMU 15-445/645 (Fall 2017)

10

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a
function written by the application
developer that extends the system's
functionality beyond its built-in

operations.

— |t takes in input arguments (scalars)
— Perform some computation

— Return a result (scalars, tables)

CMU 15-445/645 (Fall 2017)

1

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

UDF DEFINITION

Return Types:
— Scalar Functions: Return a single data value

— Table Functions: Return a single result table.

Computation Definition:
— SQL Functions
— External Programming Language

CMU 15-445/645 (Fall 2017)

12

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

UDF - SQL FUNCTIONS

CREATE TABLE foo (

A SQL-based UDF contains a list of SQL id INT PRIMARY KEY,
statements that the DBMS executes in ~val VARCHAR(16)
order when the UDF is invoked. )

— The function returns whatever the result is
of the last query executed;

CREATE FUNCTION |get_foo(int) |inputArgs
RETURNS foo AS $%
SELECT * FROM foo WHERE foo.id = $1;
$$ LANGUAGE SQL;

CJ_' CARNEGIE MELLON

1C3MU 15-445/645 (Fall 2017) L = DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

UDF - SQL FUNCTIONS

CREATE TABLE foo (

A SQL-based UDF contains a list of SQL id INT PRIMARY KEY,
statements that the DBMS executes in ~val VARCHAR(16)
order when the UDF is invoked. )

— The function returns whatever the result is
of the last query executed;

CREATE FUNCTION get_foo(int)
Return Args [RETURNS foo|AS $$
SELECT * FROM foo WHERE foo.id = $1;
$$ LANGUAGE SQL;

CJ_' CARNEGIE MELLON

1C3MU 15-445/645 (Fall 2017) L = DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

UDF - SQL FUNCTIONS

CREATE TABLE foo (
A SQL-based UDF contains a list of SQL id INT PRIMARY KEY,
statements that the DBMS executes in val VARCHAR(16)

order when the UDF is invoked. );
— The function returns whatever the result is
of the last query executed;

CREATE FUNCTION get_foo(int)
RETURNS foo AS $$

SELECT * FROM foo WHERE foo.id = $1;||Function Body

$$ LANGUAGE SQL;

CJ_' CARNEGIE MELLON

1C3MU 15-445/645 (Fall 2017) L = DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

UDF - EXTERNAL
PROGRAMMING LANGUAGE

Some DBMSs support writing UDFs in

languages other than SQL.
— SQL Standard: SQL/PSM

— Oracle/DB2: PL/SQL

— Postgres: PL/pgSQL

— MSSQL: Transact-SQL

Other systems support more common
programming languages:
— Sandbox vs. non-Sandbox

CMU 15-445/645 (Fall 2017)

14

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PL/PGSQL Example

CREATE OR REPLACE FUNCTION get_foo(int)
RETURNS SETOF foo AS $$%
BEGIN
RETURN QUERY SELECT * FROM foo
WHERE foo.1d = $1;
END;
$$ LANGUAGE plpgsql; @) PostgreSQL

. @ & CARNEGIE MELLON
1C5MU 15-445/645 (Fall 2017) :.1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PL/PGSQL Example (2)

CREATE OR REPLACE FUNCTION sum_foo(i int)
RETURNS int AS $$%
DECLARE foo_rec RECORD;
DECLARE out INT;
BEGIN
out := 0;
FOR foo_rec IN SELECT id FROM foo
WHERE id > i LOOP
out := out + foo_rec.1id;
END LOOP;
RETURN out;
END;
$$ LANGUAGE plpgsql; PostgreSQL

. @ & CARNEGIE MELLON
1C6MU 15-445/645 (Fall 2017) :'-1 DATABASE GROUP



http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

STORED PROCEDURES

A stored procedure is a self-contained
function that performs more complex
logic inside of the DBMS.

— Can have many input/output parameters.
— Can modify the database table/structures.
— Not normally used within a SQL query.

CMU 15-445/645 (Fall 2017)

17

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

STORED PROCEDURES
Application

BEGIN

SQL

Program Logic
SQL

Program Logic

COMMIT

. @ & CARNEGIE MELLON
1CgMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

STORED PROCEDURES
Application

CALL PROC(x=99)

CMU 15-445/645 (Fall 2017)

18

PROC(x)

BEGIN

soL

Program Logic
SQL

Program Logic

COMMIT

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

STORED PROCEDURE VS.
UDF

A UDF is meant to perform a subset of
a read-only computation within a query.

A stored procedure is meant to perform
a complete computation that is
independent of a query.

@ & CARNEGIE MELLON
CMU 15-445/645 (Fall 2017
o i L2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

DATABASE TRIGGERS

A trigger instructs the DBMS to invoke
a UDF when some event occurs in the
database.

The developer has to define:

— What type of event will cause it to fire.
— The scope of the event.

— When it fires relative to that event.

@ & CARNEGIE MELLON
;(I;/IU 15-445/645 (Fall 2017) :-d DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIGGER DEFINITION

Event Type: Event Scope: Trigger Timing:

— INSERT — TABLE — Before the statement executes.

— UPDATE — DATABASE — After the statement executes

— DELETE — VIEW — Before each row that the statement
— TRUNCATE — SYSTEM affects.

— CREATE — After each row that the statement
— ALTER affects.

— DROP — Instead of the statement.

C_a CARNEGIE MELLON

CMU 15-445/645 (Fall 2017
o = Y2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIGGER EXAMPLE

CREATE TABLE foo ( CREATE TABLE foo_audit (

id INT PRIMARY KEY, id SERIAL PRIMARY KEY,

val VARCHAR(16) foo_id INT REFERENCES foo (id),
); orig_val VARCHAR,

cdate TIMESTAMP
);

. @ & CARNEGIE MELLON
;\/IU 15-445/645 (Fall 2017) Y2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIGGER EXAMPLE

CREATE TABLE foo ( CREATE TABLE foo_audit (
id INT PRIMARY KECREATE OR REPLACE FUNCTION log_foo_updates()
val VARCHAR(16) RETURNS trigger AS $$

); BEGIN

Tuple Versjons | IF NEW.val <> OLD.val THEN
INSERT INTO foo_audit
(foo_id, orig_val, cdate)
VALUES (OLD.id, OLD.val, NOW());:
END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

TRIGGER EXAMPLE

CREATE TABLE foo ( CREATE TABLE foo_audit (
id INT PRIMARY KECREATE OR REPLACE FUNCTION log_foo_updates()
val VARCHAR(16) RETURNS trigger AS $$

); BEGIN

IF NEW.val <> OLD.val THEN
INSERT INTO foo_audit
(foo_id, orig_val, cdate)
VALUES (OLD.id, OLD.val, NOW()):
END IF:

CREATE TRIGGER foo_updates
BEFORE UPDATE ON foo FOR EACH ROW
EXECUTE PROCEDURE log_foo_updates();

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CHANGE NOTIFICATIONS

A change notification is like a trigger
except that the DBMS sends a message
to an external entity that something

notable has happened in the database.

— Think a "pub/sub" system.

— Can be chained with a trigger to pass along
whenever a change occurs.

SQL standard: LISTEN + NOTIFY

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

NOTIFICATION EXAMPLE

CREATE OR REPLACE FUNCTION notify_foo_updates()
RETURNS trigger AS $%
DECLARE notification JSON;
BEGIN
IF NEW.val <> OLD.val THEN
notification = row_to_json(NEW); Notification
PERFORM pg_notify('foo_update', Payload
notification::text)

CREATE TRIGGER foo_notify
BEFORE UPDATE ON foo FOR EACH ROW

EXECUTE PROCEDURE notify_foo_updates();
|

END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

OBSERVATION

All DBMSs or less support all of the
types in the SQL standard.

They also support basic arithmetic and
string manipulation on them.

But what if we want to store data that
doesn't match any of the built-in types?

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

DATA SERIALIZATION

One potential solution is to just store

the complex in its serialized form:
— Java serialize, Python pickle

— Google Protobuf, Facebook Thrift

— JSON / XML

This has problems:

— How do you edit a sub-element?

— How does the optimizer estimate selectivity
on predicates that access serialized data?

— How do you execute aggregates and other
functions on the serialized object?

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

USER-DEFINED TYPES

A user-defined type is a special data
type that is defined by the application
developer that the DBMS can stored

natively.

— First introduced by Postgres in the 1980s.

— Added to the SQL:1999 standard as part of
the "object-relational database" extensions.

— Sometimes called structured user-defined
types or structured types.

C_g CARNEGIE MELLON

;;\/IU 15-445/645 (Fall 2017) L ” DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

USER-DEFINED TYPES

Each DBMS exposes a different API

that allows you to create a UDT.

— Oracle supports PL/SQL.

— DBZ2 supports creating types based on built-
in types.

— MSSQL/Postgres only support type
definition using external languages (.NET, C)

C_g CARNEGIE MELLON

CMU 15-445/645 (Fall 2017
o = Y2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VIEWS

Creates a "virtual" table containing the
output from a SELECT query.

Mechanism for hiding data from view of
certain users.

Can be used to simplify a complex

query that is executed often.
— Won’t make it faster though!

CMU 15-445/645 (Fall 2017)

29

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VIEW EXAMPLE (1)

Create a view of the CS student
records with just their id, name,
and login.

sid name login age gpa
53666 |[Kanye West kw@cs 40 |3.5
53677 |Justin Bieber |jbQece 23 [2.25
53688 [Tone Loc tloc@isr |51 |3.8
53699 |[Andy Pavlo pavlo@cs (36 (3.0

CMU 15-445/645 (Fall 2017)

30

cs_students AS
SELECT sid, name, login
FROM student
WHERE login LIKE '%@cs';

sid name login
53666 [Kanye West kw@cs
53699 [Andy Pavlo pavlo@cs

@ & CARNEGIE MELLON
%2 DATABASE GROUP



http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VIEW EXAMPLE (2)

Create a view with the average age of
all of the students.

CREATE VIEW cs_gpa AS
SELECT AVG(gpa) AS avg_gpa
FROM student
WHERE login LIKE '%@cs';

CMU 15-445/645 (Fall 2017)
31

@ & CARNEGIE MELLON
%2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VIEWS VS. SELECT INTO

VIEW CREATE VIEW cs_gpa AS
— Dynamic results are only materialized SELECT AVG(gpa) AS avg_gpa
when needed. FROM student

WHERE login LIKE '%@cs';

SELECT..INTO
— Creates static table that does not get  [SELECT AVG(gpa) AS avg_gpa

updated when student gets updated. INTO cs_gpa
FROM student

WHERE login LIKE '%@cs';

@ & CARNEGIE MELLON
;\/IU 15-445/645 (Fall 2017) :.1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

VIEWS VS. SELECT INTO

VIEW CREATE VIEW cs_gpa AS
— Dynamic results are only materialized SELECT AVG(gpa) AS avg_gpa
when needed. FROM student

WHERE login LIKE '%@cs';

SELECT..INTO
— Creates static table that does not get  [SELECT AVG(gpa) AS avg_gpa

updated when student gets updated. INTO cs_gpa
FROM student

WHERE login LIKE '%@cs';

@ & CARNEGIE MELLON
;\/IU 15-445/645 (Fall 2017) :.1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

UPDATING VIEWS

The SQL-92 standard specifies that an
application is allowed to modify a VIEW

if it has the following properties:

— |t only contains one base table.

— |t does not contain grouping, distinction,
union, or aggregation.

C_g CARNEGIE MELLON

g;\/IU 15-445/645 (Fall 2017) L 2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

MATERIALIZED VIEWS

Creates a view containing the output
from a SELECT query that is
automatically updated when the
underlying tables change.

CREATE MATERIALIZED VIEW cs_gpa AS
SELECT AVG(gpa) AS avg_gpa
FROM student
WHERE login LIKE '%@cs';

. @ & CARNEGIE MELLON
gz/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONCLUSION

Moving application logic into the DBMS has

lots of benefits.
— Better Efficiency
— Reusable across applications

But it has problems:

Not portable

PL/SQL is awkward to write.

DBAs don't like constant change.

Potentially need to maintain different versions.

LI

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

NEXT CLASS

TRANSACTIONS!!

. @ & CARNEGIE MELLON
;IS\/IU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP


http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

