S AR (Carnegie Mellon University

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/fall2017/
http://15445.courses.cs.cmu.edu/fall2017/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

TODAY'S AGENDA

Phantom Problem
Index Locking
Isolation Levels
Index Crabbing

CMU 15-445/645 (Fall 2017)

2

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

DYNAMIC DATABASES

Recall that so far we have only dealing with
transactions that read and update data.

But now if we have insertions, updates,
and deletions, we have new problems...

CMU 15-445/645 (Fall 2017)

3

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

THE PHANTOM PROBLEM
Schedule

CMU 15-445/645 (Fall 2017)
4

il NN EEN NN SN S N S S D S S S S N N S . .y,

-~

BEGIN

SELECT MAX(age)
FROM people

WHERE status='lit'

SELECT MAX(age)
FROM people

WHERE status='lit'

COMMIT

INSEREINTO people
(agse @ status='lit")

COMMIT

~—----------’

CREATE TABLE people (
id SERIAL,
name VARCHAR,
age INT,
status VARCHAR

);

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

WTF?

How did this happen?
— Because T, locked only existing records and not
ones under way!

Conflict serializability on reads and writes of
individual items guarantees serializability
only if the set of objects is fixed.

We wiill solve this problem in the next class.

CMU 15-445/645 (Fall 2017)

5

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

PREDICATE LOCKING

Lock records that satisfy a logical
predicate:

— Example: status="1it'

In general, predicate locking has a lot
of locking overhead.

Index locking is a special case of
predicate locking that is potentially
more efficient.

@ & CARNEGIE MELLON
ZMU 15-445/645 (Fall 2017) '.,'_1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

INDEX LOCKING

If there is a dense index on the status
field then the txn can lock index page
containing the data with status="11it".

If there are no records with
status="1l1t', the txn must lock the
index page where such a data entry
would be, if it existed.

. @ & CARNEGIE MELLON
gMU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

LOCKING WITHOUT AN
INDEX

If there is no suitable index, then the

txn must obtain:

— A lock on every page in the table to prevent
a record’s status="1lit"' from being
changedto lit.

— The lock for the table itself to prevent
records with status="1it"' from being
added or deleted.

C_g CARNEGIE MELLON

gMU 15-445/645 (Fall 2017) L e DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

REPEATING SCANS

An alternative is to just re-execute
every scan again when the txn commits
and check whether it gets the same

result.

— Have to retain the scan set for every range
query in a txn.

— Andy doesn't know of any commercial
system that does this (only just Silo?).

CMU 15-445/645 (Fall 2017)

9

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://github.com/stephentu/silo

WEAKER LEVELS OF
ISOLATION

Serializability is useful because it allows
programmers to ignore concurrency
issues.

But enforcing it may allow too little
concurrency and limit performance.

We may want to use a weaker level of
consistency to improve scalability.

CMU 15-445/645 (Fall 2017)

10

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ISOLATION LEVELS

Controls the extent that a txn is
exposed to the actions of other
concurrent txns.

Provides for greater concurrency at the
cost of exposing txns to uncommitted

changes:

— Dirty Reads

— Unrepeatable Reads
— Phantom Reads

. @ & CARNEGIE MELLON
1C1MU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads
repeatable, no dirty reads.

REPEATABLE READS: Phantoms may
happen.

READ COMMITTED: Phantoms and
unrepeatable reads may happen.

READ UNCOMMITTED: All of them may
happen.

S
)
=]
t
<
I
S
o
-
o
—
o
(]
—

CMU 15-445/645 (Fall 2017)
12

@ & CARNEGIE MELLON
"2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ISOLATION LEVELS

¢~ \\
{ Unrepeatable 1
! Dirty Read Read Phantom :
|
|
! SERIALIZABLE| No No No
i |
| REPEATABLE READ| No No Maybe |
|
: i
: i
| READ COMMITTED| No Maybe Maybe !
' I
: i
| READ UNCOMMITTED| Maybe Maybe Maybe i
S J

@ & CARNEGIE MELLON
1C3MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ISOLATION LEVELS

SERIALIZABLE: Obtain all locks first; plus
index locks, plus strict 2PL.

REPEATABLE READS: Same as above, but
no index locks.

READ COMMITTED: Same as above, but S
locks are released immediately.

READ UNCOMMITTED: Same as above, but
allows dirty reads (no S locks).

@ & CARNEGIE MELLON
1C4MU 15-445/645 (Fall 2017) :'-d DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

SQL-92 ISOLATION LEVELS

Not all DBMS support all isolation
levels in all execution scenarios
(e.qg., replication).

The default depends on
implementation...

CMU 15-445/645 (Fall 2017)

15

SET TRANSACTION ISOLATION LEVEL
<isolation-level>;

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ISOLATION LEVELS (2013)

Default Maximum

Actian Ingres 10.0/10S < SERIALIZABLE > SERIALIZABLE
Aerospike READ COMMITTED READ COMMITTED

Greenplum 4.1 READ COMMITTED SERIALIZABLE

MySQL 5.6 REPEATABLE READS SERIALIZABLE
MemSQL 1b READ COMMITTED READ COMMITTED

MS SQL Server 2012 READ COMMITTED SERIALIZABLE

Oracle 11g READ COMMITTED CGNAPSHOT ISOLATION

Postgres 9.2.2 READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE
ScaleDB 1.02 READ COMMITTED READ COMMITTED

VoltDB € SERIALIZABLE SERIALIZABLE -
Source: Peter Bailis

CMU 15-445/645 (Fall 2017) E_i S?_T_ﬁ%ﬂgéﬂ&lﬁ.gﬂp

16

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

SQL-92 ACCESS MODES

You can also provide hints to the [ser TRANSACTION <access-mode>;

DBMS about whether a txn will
modify the database.
Only two possible modes:

— READ WRITE (Default)
— READ ONLY

Not all DBMSs will optimize execution
if you set a txn to in READ ONLY mode.

. @ & CARNEGIE MELLON
1C7MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

LOCKING IN B+TREES

What about locking indexes?

They are not quite like other database
elements so we can treat them
differently:

— It’'s okay to have non-serializable concurrent

access to an index as long as the accuracy
of the index is maintained.

@ & CARNEGIE MELLON
CMU 15-445/645 (Fall 2017) » o
. @ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE

T, wants to insert entry in node H
T, wants to insert entry in node I

Why not use 2PL?

CMU 15-445/645 (Fall 2017)

19

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE

T, wants to insert entry in node H
T, wants to insert entry in node I

Why not use 2PL?

Because txns have to hold on to
their locks for too long!

CMU 15-445/645 (Fall 2017)

19

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

LOCK CRABBING

Protocol to allow multiple threads to

access/modify B+Tree at the same time.

Basic ldea:

— Get lock for parent.

— Get lock for child

— Release lock for parent if “safe”.

A safe node is one that will not split or

merge when updated.
— Not full (on insertion)
— More than half-full (on deletion)

CMU 15-445/645 (Fall 2017)

20

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

LOCK CRABBING

Search: Start at root and go down;

repeatedly,
— Acquire S lock on child
— Then unlock parent

Insert/Delete: Start at root and go
down, obtaining X locks as needed.

Once child is locked, check if it is safe:
— If child is safe, release all locks on
ancestors.

. @ & CARNEGIE MELLON
;MU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #1 - SEARCH 38

/

10 35 B

20 A

6 12 23 F ||38]/44]|| C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #1 - SEARCH 38

S
/

A

35 B

1

6 12 23 F ||38]|/44]|l C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #1 - SEARCH 38

G

10 35 B

It’s safe to release
the lock on A.

6 77T T TZ3] F ||38]|/44]|l C

[V IN JU 1N

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #1 - SEARCH 38

20 A
/ S
10 35 B
6 12 23 F ||38]|/44]|l C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #1 - SEARCH 38

/

10 35 B

20 A

6 12 23 38|44 || C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #1 - SEARCH 38

/

10 35 B

20 A

6 12 23 F ||38]/44]|| C

[V LN /]

1112132022723 |31
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@)
O
—
S

| |
w
o1
(08
o)
—
N
N

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #1 - SEARCH 38

/

10 35 B

20 A

6 12 23 F ||38]/44]|| C

[V N /ST

11112131 20(22H23|31H{35|36§ 38|)1 H 44
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

S
/

A

35 B

1

6 12 23 F ||38]|/44]|l C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

G

10 35 B

We may need to coalesce
B, so we can’t release

the lock on A.
6 \- - F ||38]|44]|| C

SV LN /]

110111012|11320122123(31735(36138(4144
G H I D E

. @ & CARNEGIE MELLON
SQ/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
NN
(@)}
o)

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

}Hi2® A
/ X
10 35 B
X
6 12| || 23 38 (44| C
j \4 l We know that C will not \l
need to merge with F, so

31406|9HR10/11H11it’s safe to release A+B. |38|41H44

4

G H I D E

. @ & CARNEGIE MELLON
SQ/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

20 A
10 35 B
X
6 12| || 23 38 (44| C
j \4 l We know that C will not \l
need to merge with F, so
3(4H6|9H10|11H11t’s safe to release A+B. |38|41H44

> 4

G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23 F ||38]/44]|| C

[V LN /]

1112132022723 |31
G H I D E

. @ & CARNEGIE MELLON
SQ/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@)
O
—
S

| |
w
o1
(08
o)
—
N
N

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23 F ||38]/44]|| C

[V LN /]

1112132022723 |31
G H I D E

. @ & CARNEGIE MELLON
SQ/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@)
O
—
S

| |
w
o1
(08
o)
—
N
N

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #3 - INSERT 45

G

10 35 B

We know that if C needs
to split, B has room so
6 it’s safe to release A.J F ll3sllaall C

A awrauh

G H I D E

. @ & CARNEGIE MELLON
;II/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
NN
(@)}
o)

11

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #3 - INSERT 45

20 A
/ X
10 35 B
6 12 23 38|44 || C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
;I:/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #3 - INSERT 45

20 A
/ X
10 35 B
6 12 23 38|44 || C

[V DN /U [

1M[12(13/20122023131793513603

E has room so it won’t split,
so we can release B+C.

w
N
(@))
(o)
—
S

CMU 15-445/645 (Fall 2017) \.

24

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #3 - INSERT 45

/

10 35 B

20 A

6 12 23 F ||38]/44]|| C

[V DN /U [

1M[12(13/20122023131793513603

E has room so it won’t split,
so we can release B+C.

w
N
(@))
(o)
—
S

CMU 15-445/645 (Fall 2017) \.

24

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

gze A
/ :
10 35 B
6 12 23 F ||38]|44]| C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

20 A
/ X
10 35 B
6 12 23 F ||38]|/44]|l C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

20 A
/ X
10 35 B
6 12 3 F ||38]|44]| C

[V DN /U [N

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

6 12 3 F ||38]|/44]|l C

[V DN /U [N

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

6
3140619
CMU 15-445/645 (Fall 2017) C-D CARNEGIE MELLON

25 "2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

oA\

3
We need to split H so we | D =
need to keep the lock on
its parent node.
CMU 15-445/645 (Fall 2017) P f_‘i [C)?\'T'Rfﬁggé%gﬂp

25

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

oA\

3
We need to split H so we | D =
need to keep the lock on
its parent node.
CMU 15-445/645 (Fall 2017) P f_‘i [C)?\'T'Rfﬁggé%gﬂp

25

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

20

A

/

10

12

Vo

w

35

44

CMU 15-445/645 (Fall 2017)
25

L

We need to split H so we
need to keep the lock on

its parent node.

38

41

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

OBSERVATION

()
Delete 38
:}ﬁize
_ y,

CMU 15-445/645 (Fall 2017)

26

What was the first step that all of the
update examples did on the B+Tree?

(()
Insert 45 Insert 25
:}ﬁzo :}ﬁze A
_ _ y,

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

OBSERVATION

What was the first step that all of the
update examples did on the B+Tree?

Locking the root every time becomes a
bottleneck with higher concurrency.

Can we do better?

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

BETTER TREE LOCKING
ALGORITHM

Acta Informatica 9, 1 - 21 (1977)

© by Springer-Verlag 1977

Assume that the leaf is safe, and use S-
locks & crabbing to reach it, and verify. e

IBM Research Laboratory, San José, CA 95193, USA
Summary. Concurrent operations on B-trees pose the problem of insuring

. .
that each operation can be carried out without interfering with other opera-
I VI I I tions being performed simultancously by other users. This problem can
9 become critical if these structures are being used to support access paths,

like indexes, to data base systems. In this case, seri

lizing access to one of
these indexes can create an unacceptable bottleneck for the entire system.

H Thus, there is a need for locking protocols that can assure integrity for each
a O r I I I I access while at the same time providing a maximum possible degree of con-
° currency. Another feature required from these protocols is that they be

deadlock free, since the cost to resolve a deadlock may be high.
Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem

L] o of concurrent access to B-trees. We present a deadlock free solution which

O can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

9 O The solution presented here uses simple locking protocols. Thus, we
conclude that B-trees can be used in a multi-user

Concurrency of Operations on B-Trees.

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer

O and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
I l - [13]. Performance studies of it were restricted to the single user environment.
° ° Recently, these structures have been examined for possible use in a multi-user

(concurrent) environment. Some al studies have been made about the feasi-
bility of their use in this type of situation (1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

* Permanent address: ostitut fle Informatik der Technischen Universitit Miinchen, Arcisstr. 21,
D-8000 Mianchen 2, Germany (Fed. Rep)

. @ & CARNEGIE MELLON
;I;/IU 15-445/645 (Fall 2017) .-1 DATABASE GROUP

L

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/
https://link.springer.com/article/10.1007/BF00263762

EXAMPLE #2 - DELETE 38

S
/

A

35 B

1

6 12 23 F ||38]|/44]|l C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

20 A
/ S
10 35 B
6 12 23 F ||38]|/44]|l C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23 38|44 || C

[V DN /U [

1MR12113M™120(221023|31035|36138(4144
G H I D E

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@))
(o)
—
S

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23 38|44 || C

[V LN /]

1112132022723 |31 41044
G H I D E

. @ & CARNEGIE MELLON
;g/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

w
N
(@)}
o)
—
S
|
w
o1
(8
o))

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23

[V LN /]

11012(13M20(22723

w
N
(@))
(o)
—
S

CMU 15-445/645 (Fall 2017)
29

[D will not need to E

coalesce, so we’re safe! & @ CARNEGIE MELLON
%% DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23

[V LN /]

11012(13M20(22723

w
N
(@))
(o)
—
S

CMU 15-445/645 (Fall 2017)
29

[D will not need to E

coalesce, so we’re safe! & @ CARNEGIE MELLON
%% DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

w
N
(@))
(o)
—
S

110121312022 2535|361 38|41 44

. @ & CARNEGIE MELLON
gg/lu 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

w
AN

We need to split H so
we have to restart and
re-execute like before.

CMU 15-445/645 (Fall 2017)
30

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

BETTER TREE LOCKING
ALGORITHM

Search: Same as before.

Insert/Delete:

— Set locks as if for search, get to leaf, and set
X lock on leaf.

— If leaf is not safe, release all locks, and
restart txn using previous Insert/Delete
protocol.

Gambles that only leaf node will be
modified; if not, S locks set on the first
pass to leaf are wasteful.

CMU 15-445/645 (Fall 2017)

31

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

ADDITIONAL POINTS

Which order to release locks in
multiple-granularity locking?
From the bottom up

Which order to release latches in
B+Tree latching?

As early as possible to maximize
concurrency.

CMU 15-445/645 (Fall 2017)

32

@ & CARNEGIE MELLON
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

CONCLUSION

Indexes make concurrency control hard
because it's a essentially a second
copy of the data.

Most applications do not execute with
SERIALIZABLE isolation.

. @ & CARNEGIE MELLON
%\/IU 15-445/645 (Fall 2017) ..,-1 DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

NEXT CLASS

More Concurrency Control!!!
Timestamp Ordering!!!

. @ & CARNEGIE MELLON
;I‘\/IU 15-445/645 (Fall 2017) ..,-‘ DATABASE GROUP

http://db.cs.cmu.edu/
http://15445.courses.cs.cmu.edu/

