
Lecture #08: Hash Tables
15-445/645 Database Systems (Fall 2018)

https://15445.courses.cs.cmu.edu/fall2018/
Carnegie Mellon University

Prof. Andy Pavlo

1 Data Structures
A DBMS uses various data structures for many different parts of the system internals:

• Internal Meta-Data: Keep track of information about the database and the system state.
• Core Data Storage: Can be used as the base storage for tuples in the database.
• Temporary Data Structures: The DBMS can build data structures on the fly while processing a

query to speed up execution (e.g., hash tables for joins).
• Table Indexes: Auxillary data structures to make it easier to find specific tuples.

Design Decisions:

1. Data organization: How we layout memory and what information to store inside the data structure.
2. Concurrency: How to enable multiple threads to access the data structure without causing problems.

2 Hash Table
A hash table implements an associative array abstract data type that maps keys to values. A hash table
implementation is comprised of two parts:

• Hash Function: How to map a large key space into a smaller domain. This is used to compute an
index into an array of buckets or slots. Need to consider the trade-off between fast execution vs.
collision rate.

• Hashing Scheme: How to handle key collisions after hashing. Need to consider the trade-off between
the need to allocate a large hash table to reduce collusions vs. executing additional instructions to
find/insert keys.

Consider a simple static hash table implementation:

• Allocate a giant array with one slot for every element. Mod the key by number of elements to find the
offset in the array.

• Problematic assumptions:
1. You know the number of elements ahead of time
2. Each key is unique
3. Perfect hash function (if key1 != key2 then hash(key1) != hash(key2))

3 Hash Functions
We do not need a cryptographic hash function because we don’t need to get back key from hash. We only
care about speed and collision rate.

https://15445.courses.cs.cmu.edu/fall2018/
https://15445.courses.cs.cmu.edu/fall2018/
http://www.cs.cmu.edu/~pavlo/


Fall 2018– Lecture #08 Hash Tables

4 Open Addressing Hashing
• Single giant table of slots
• Resolve collisions by linearly searching for the next free slot in the table
• To see if value is present, go to offset using hash, and scan for the key
• To reduce the number of wasteful comparisons, it is important to avoid collisions of × hashed key.

This requires hash table with 2 the number of slots as the number of expected elements

5 Cuckoo Hashing
• Maintain multiple has tables with different hash functions
• On insert, check every table and pick anyone that has a free slot
• If no table has free slot, evict element from one of them, and rehash it to find a new location
• If we find a cycle, then we can rebuild the entire hash tables with new hash functions

6 Chained Hashing
• Maintain a linked list of buckets for each slot in the hash table.
• Resolves collisions by placing elements with same hash key into the same bucket.
• If bucket is full, add another bucket to list. The hash table can grow infinitely because you keep adding

new buckets.
• To handle concurrency, you only need to take a latch on each bucket
• Approaches for non-unique keys

1. Separate linked list: stores values in separate storage area
2. Store in bucket: Store duplicate keys in the same buckets (store values with their keys)

7 Extendible Hashing
• Chained-hashing approach with buckets.
• Instead of letting the linked list of buckets grow indefinitely, we’re going to split them incrementally.
• When a bucket is full, we split the bucket and reshuffle its elements.
• Uses global and local depths to determine buckets
• Hash table doubles in size to allow for more buckets.

8 Linear Hashing
• Maintain a pointer that tracks the next bucket to split.
• Overflow criterion is left up to the implementation.
• When any bucket overflows, split the bucket at the pointer location by adding a new slot entry, and

create a new hash function.
• If hash function maps to slot that has previously been pointed to by pointer, apply the new hash

function.
• When pointer reaches last slot, delete original hash function and replace it with new hash function.

15-445/645 Database Systems
Page 2 of 2

https://15445.courses.cs.cmu.edu/fall2018/

	Data Structures
	Hash Table
	Hash Functions
	Open Addressing Hashing
	Cuckoo Hashing
	Chained Hashing
	Extendible Hashing
	Linear Hashing

