1 Overview

SQL is declarative. This means that the user tells the DBMS what answer they want, not how to get the answer. Thus, the DBMS needs to translate a SQL statement into an executable query plan. But there are different ways to execute a query (e.g., join algorithms) and there will be differences in performance for these plans. Thus, the DBMS needs a way to pick the “best” plan for a given query. This is the job of the DBMS’s optimizer.

There are two types of optimization strategies:

- **Heuristics/Rules**: Rewrite the query to remove inefficiencies. Does not require a cost model.
- **Cost-based Search**: Use a cost model to evaluate multiple equivalent plans and pick the one with the smallest cost.

2 Rule-based Query Optimization

Two relational algebra expressions are equivalent if they generate the same set of tuples. Given this, the DBMS can identify better query plans without a cost model. This is technique often called query rewriting. Note that most DBMSs will rewrite the query plan and not the raw SQL string.

Examples of query rewriting:

- **Predicate Push-down**: Perform predicate filtering before join to reduce size of join.
- **Projections Push down**: Perform projections early to create smaller tuples and reduce intermediate results. You can project out all attributes except the ones requested or required (e.g., join attributes).
- **Expression Simplification**: Exploit the transitive properties of boolean logic to rewrite predicate expressions into a more simple form.

3 Cost-based Query Optimization

The DBMS’s optimizer will use an internal cost model to estimate the execution cost for a particular query plan. This provides an estimate to determine whether one plan is better than another without having to actually run the query (which would be slow to do for thousands of plans).

This estimate is an internal metric that (usually) is not comparable to real-world metrics, but it can be derived from estimating the usage of different resources:

- **CPU**: Small cost; tough to estimate.
- **Disk**: Number of block transferred.
- **Memory**: Amount of DRAM used.
- **Network**: Number of messages transfer ed.
To accomplish this, the DBMS stores internal statistics about tables, attributes, and indexes in its internal catalog. Different systems update the statistics at different times. Commercial DBMS have way more robust and accurate statistics compared to the open source systems. These are estimates and thus the cost estimates will often be inaccurate.

Derivable Statistics

Basic Information:
- For a relation R, the DBMS stores the number of tuples (N_R) and distinct values per attribute $(V(A, R))$.
- The selection cardinality $(SC(A, R))$ is the average number of records with a value for an attribute A given $N_R/V(A, R)$.

Complex Predicates:
- The selectivity (sel) of a predicate P is the fraction of tuples that qualify:
 $$sel(A = constant) = SC(P)/V(A, R)$$
- For a range query, we can use: $sel(A >= a) = (A_{max} - a)/(A_{max} - A_{min})$.
- For negations: $sel(notP) = 1 - sel(P)$.
- The selectivity is the probability that a tuple will satisfy the predicate. Thus, assuming predicates are independent, then $sel(P1 \land P2) = sel(P1) \times sel(P2)$.

Join Estimation:
- Given a join of R and S, the estimated size of a join on non-key attribute A is approx
 $$estSize \approx N_R \times N_S / \max(V(A, R), V(A, S))$$

Statistics Storage:
- **Histograms**: We assumed values were uniformly distributed. But in real databases values are not uniformly distributed, and thus maintaining a histogram is expensive. We can put values into buckets to reduce the size of the histograms. However, this can lead to inaccuracies as frequent values will sway the count of infrequent values. To counteract this, we can size the buckets such that their spread is the same. They each hold a similar amount of values.
- **Sampling**: Modern DBMSs also employ sampling to estimate predicate selectivities. Randomly select and maintain a subset of tuples from a table and estimate the selectivity of the predicate by applying the predicate to the small sample.

Search Algorithm

1. Bring query in internal form into canonical form
2. Generate alternative plans
3. Generate costs for each plan
4. Select plan with smallest cost

It’s important to pick the best access method (i.e., sequential scan, binary search, index scan) for each table accessed in the query. Simple heuristics are sometimes good enough for simple OLTP queries (i.e., queries that only access a single table). For example, queries where it easy to pick the right index to use are called *sargable* (Search Argument Able). Joins in OLTP queries are also almost always on foreign key relationships with small cardinality.
For multiple relation query planning, the number of alternative plans grows rapidly as number of tables joined increases. For an \(n \)-way join, the number of different ways to order the join operations is known as a Catalan number (approx \(4^n \)). This is too large of a solution space and it is infeasible for the DBMS to consider all possible plans. Thus, we need a way to reduce the search complexity. For example, in IBM’s System R, they only considered left-deep join trees. Left-deep joins allow you to pipeline data, and only need to maintain a single join table in memory.

Candidate plans algorithm

- Step 1: Enumerate the orderings (Left-deep Tree #1, Left-deep Tree #2, \ldots)
- Step 2: Enumerate the plans for each operator (Hash, SortMerge, \ldots)
- Step 3: Enumerate the access paths for each table (Index1, Index2, SeqScan, \ldots)
- Step 4: Build a search graph and walk through to find the lowest cost path

4 Nested Sub-Queries

The DBMS treats nested sub-queries in the WHERE clause as functions that take parameters and return a single value or set of values.

Two Approaches:

1. Rewrite to decorrelate and/or flatten queries.
2. Decompose nested query and store result in subtable.