
Lecture #13: Query Optimization
15-445/645 Database Systems (Fall 2018)

https://15445.courses.cs.cmu.edu/fall2018/
Carnegie Mellon University

Prof. Andy Pavlo

1 Overview
SQL is declarative. This means that the user tells the DBMS what answer they want, not how to get the
answer. Thus, the DBMS needs to translate a SQL statement into an executable query plan. But there are
different ways to execute a query (e.g. join algorithms) and there will be differences in performance for
these plans. Thus, the DBMS needs a way to pick the “best” plan for a given query. This is the job of the
DBMS’s optimizer.

There are two types of optimization strategies:

• Heuristics/Rules: Rewrite the query to remove inefficiencies. Does not require a cost model.
• Cost-based Search: Use a cost model to evaluate multiple equivalent plans and pick the one with the

smallest cost.

2 Rule-based Query Optimization
Two relational algebra expressions are equivalent if they generate the same set of tuples. Given this, the
DBMS can identify better query plans without a cost model. This is technique often called query rewriting.
Note that most DBMSs will rewrite the query plan and not the raw SQL string.

Examples of query rewriting:

• Predicate Push-down: Perform predicate filtering before join to reduce size of join).
• Projections Push down: Perform projections early to create smaller tuples and reduce intermediate

results. You can project out all attributes except the ones requested or required (e.g. join attributes).
• Expression Simplification: Exploit the transitive properties of boolean logic to rewrite predicate

expressions into a more simple form.

3 Cost-based Query Optimization
The DBMS’s optimizer will use an internal cost model to estimate the execution cost for a particular query
plan. This provides an estimate to determine whether one plan is better than another without having to
actually run the query (which would be slow to do for thousands of plans).

This estimate is an internal metric that (usually) is not comparable to real-world metrics, but it can be derived
from estimating the usage of different resources:

• CPU: Small cost; tough to estimate.
• Disk: Number of block transferred.
• Memory: Amount of DRAM used.
• Network: Number of messages transfer ed.

https://15445.courses.cs.cmu.edu/fall2018/
https://15445.courses.cs.cmu.edu/fall2018/
http://www.cs.cmu.edu/~pavlo/


Fall 2018– Lecture #13 Query Optimization

To accomplish this, the DBMS stores internal statistics about tables, attributes, and indexes in its internal
catalog. Different systems update the statistics at different times. Commercial DBMS have way more robust
and accurate statistics compared to the open source systems. These are estimates and thus the cost estimates
will often be inaccurate.

Derivable Statistics
Basic Information:

• For a relation R, the DBMS stores the number of tuples (NR) and distinct values per attribute
(V (A,R)).

• The selection cardinality (SC(A,R)) is the average number of records with a value for an attribute A
given NR/V (A,R).

Complex Predicates:

• The selectivity (sel) of a predicate P is the fraction of tuples that qualify:

sel(A = constant) = SC(P )/V (A,R)

• For a range query, we can use: sel(A >= a) = (Amax − a/(Amax −Amin)).
• For negations: sel(notP ) = 1− sel(P ).
• The selectivity is the probability that a tuple will satisfy the predicate. Thus, assuming predicates are

independent, then sel(P1
∧
P2) = sel(P1) ∗ sel(P2).

Join Estimation:

• Given a join of R and S, the estimated size of a join on non-key attribute A is approx

estSize ≈ NR ∗NS/max(V (A,R), V (A,S))

Statistics Storage:

• Histograms: We assumed values were uniformly distributed. But in real databases values are not
uniformly distributed, and thus maintaining a histogram is expensive. We can put values into buckets
to reduce the size of the histograms. However, this can lead to inaccuracies as frequent values will
sway the count of infrequent values. To counteract this, we can size the buckets such that their spread
is the same. They each hold a similar amount of values.

• Sampling: Modern DBMSs also employ sampling to estimate predicate selectivities. Randomly
select and maintain a subset of tuples from a table and estimate the selectivity of the predicate by
applying the predicate to the small sample.

Search Algorithm
1. Bring query in internal form into canonical form
2. Generate alternative plans
3. Generate costs for each plan
4. Select plan with smallest cost

It’s important to pick the best access method (i.e., sequential scan, binary search, index scan) for each table
accessed in the query. Simple heuristics are sometimes good enough for simple OLTP queries (i.e., queries
that only access a single table). For example, queries where it easy to pick the right index to use are called
sargable (Search Argument Able). Joins in OLTP queries are also almost always on foreign key relationships
with small cardinality.

15-445/645 Database Systems
Page 2 of 3

https://15445.courses.cs.cmu.edu/fall2018/


Fall 2018– Lecture #13 Query Optimization

For multiple relation query planning, the number of alternative plans grows rapidly as number of tables
joined increases. For an n-way join, the number of different ways to order the join operations is known as
a Catalan number (approx 4n). This is too large of a solution space and it is infeasible for the DBMS to
consider all possible plans. Thus, we need a way to reduce the search complexity. For example, in IBM’s
System R, they only considered left-deep join trees. Left-deep joins allow you to pipeline data, and only
need to maintain a single join table in memory.

Candidate plans algorithm

• Step 1: Enumerate the orderings (Left-deep Tree #1, Left-deep Tree #2, . . . )
• Step 2: Enumerate the plans for each operator (Hash, SortMerge, . . . )
• Step 3: Enumerate the access paths for each table (Index1, Index2, SeqScan, . . . )
• Step 4: Build a search graph and walk through to find the lowest cost path

4 Nested Sub-Queries
The DBMS treats nested sub-queries in the WHERE clause as functions that take parameters and return a
single value or set of values.

Two Approaches:

1. Rewrite to decorrelate and/or flatten queries.
2. Decompose nested query and store result in subtable.

15-445/645 Database Systems
Page 3 of 3

https://15445.courses.cs.cmu.edu/fall2018/

	Overview
	Rule-based Query Optimization
	Cost-based Query Optimization
	Nested Sub-Queries

