
Lecture #14: Parallel Execution
15-445/645 Database Systems (Fall 2018)

https://15445.courses.cs.cmu.edu/fall2018/
Carnegie Mellon University

Prof. Andy Pavlo

1 Background
All the DBMS to execute queries in parallel provides several benefits:

• Increased performance in throughput and latency.
• Increased availability.
• Potentially lower total cost of ownership (TCO).

In parallel or distributed DBMS, the database is spread out across multiple resources to improve parallelism.
The database “appears” as a single database instance to the application. The SQL query for a single-node
DBMS should generate the same result on a parallel or distributed DBMS.

Parallel DBMS:

• Nodes are physically close to each other.
• Nodes are connected with high-speed LAN.
• Communication cost between nodes is assumed to be fast and reliable.

Distributed DBMS:

• Nodes can be far from each other.
• Nodes are connected using public network.
• Communication costs between nodes is slower and failures cannot be ignored.

Types of Parallelism
• Inter-Query: The DBMS executes different queries are concurrently. This increases throughput and

reduces latency. Concurrency is tricky when queries are updating the database.
• Intra-Query: The DBMS executes the operations of a single query in parallel. This decreases latency

for long-running queries.

2 Process Models
A DBMS process model defines how the system supports concurrent requests from a multi-user applica-
tion/environment. The DBMS is comprised of more or more workers that are responsible for executing
tasks on behalf of the client and returning the results.

Approach #1 – Process per Worker:

• Each worker is a separate OS process, and thus relies on OS scheduler.
• Use shared memory for global data structures.
• A process crash does not take down entire system.

Approach #2 – Process Pool:

https://15445.courses.cs.cmu.edu/fall2018/
https://15445.courses.cs.cmu.edu/fall2018/
http://www.cs.cmu.edu/~pavlo/


Fall 2018– Lecture #14 Parallel Execution

• A worker uses any process that is free in a pool.
• Still relies on OS scheduler and shared memory.
• This approach can be bad for CPU cache locality due to no guarantee of using the same process

between queries.

Approach #3 – Thread per Worker:

• Single process with multiple worker threads.
• DBMS has to manage its own scheduling.
• May or may not use a dispatcher thread.
• Although a thread crash (may) kill the entire system, we have to make sure that we write high-quality

code to ensure that this does not happen.

Using a multi-threaded architecture has advantages that there is less overhead per context switch and you
do not have to manage shared model. The thread per worker model does not mean that you have intra-query
parallelism.

For each query plan, the DBMS has to decide where, when, and how to execute:

• How many tasks should it use?
• How many CPU cores should it use?
• What CPU core should the tasks execute on?
• Where should a task store its output?

3 Inter-Query Parallelism
The goal of this type of parallelism is to improve the DBMS’s overall performance by allowing multiple
queries to execute simultaneously.

We will cover this in more detail when we discuss concurrency control protocols.

4 Intra-Query Parallelism
The goal of this type of parallelism is to improve the performance of a single query by executing its operators
in parallel. There are parallel algorithms for every relational operator.

Intra-Operator Parallelism
• The query plan’s operators are decomposed into independent instances that perform the same function

on different subsets of data.
• The DBMS inserts an exchange operator into the query plan to coalesce results from children opera-

tors. The exchange operator prevents the DBMS from executing operators above it in the plan until it
receives all of the data from the children.

Inter-Operator Parallelism
• Operations are overlapped in order to pipeline data from one stage to the next without materialization.

This is sometimes called pipelined parallelism.
• This approach is not widely used in traditional relation DBMSs. Not all operators can emit output

until they have seen all of the tuples from their children. This is more common in stream processing
systems, systems that continually execute a query over a stream of input tuples.

15-445/645 Database Systems
Page 2 of 3

https://15445.courses.cs.cmu.edu/fall2018/


Fall 2018– Lecture #14 Parallel Execution

5 I/O Parallelism
Using additional processes/threads to execute queries in parallel will not improve performance if the disk is
always the main bottleneck. Thus, we need a way to split the database up across multiple storage devices.

Multi-Disk Parallelism
Configure OS/hardware to store the DBMS’s files across multiple storage devices. Can be done through
storage appliances and RAID configuration. This is transparent to the DBMS. It cannot have workers operate
on different devices because it is unaware of the underlying parallelism.

File-based Partitioning
Some DBMSs allow you to specify the disk location of each individual database. The buffer pool manager
maps a page to a disk location. This is also easy to do at the file-system level if the DBMS stores each
database in a separate directory. However, the log file might be shared.

Logical Partitioning
Split single logical table into disjoint physical segments that are stored/managed separately. Such partition-
ing is ideally transparent to the application. That is, the application should be able to access logical tables
without caring how things are stored.

Vertical Partitioning:

• Store a table’s attributes in a separate location (like a column store).
• Have to store tuple information to reconstruct the original record.

Horizontal Partitioning:

• Divide the tuples of a table into disjoint segments based on some partitioning keys.
• There are different ways to decide how to partition (e.g., hash, range, or predicate partitioning). The

efficacy of each approach depends on the queries.

15-445/645 Database Systems
Page 3 of 3

https://15445.courses.cs.cmu.edu/fall2018/

	Background
	Process Models
	Inter-Query Parallelism
	Intra-Query Parallelism
	I/O Parallelism

