Carnegie Mellon University

Trees Indexes
(Part I1)

Database Systems Andy Pavlo
15-445/15-645 AP Computer Science

Fall 2018 Carnegie Mellon Univ.

i.{ Lecture #08

https://db.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #1 is due Wednesday Sept 26" @ 11:59pm

Homework #2 is due Friday Sept 28% @ 11:59pm

Project #2 will be released on Wednesday Sept
26", First checkpoint is due Monday Oct 8,

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

Additional Index Usage
Skip Lists

Radix Trees

Inverted Indexes

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.

— Primary Keys

— Unique Constraints

— Foreign Keys (?)

CREATE TABLE foo (CREATE UNIQUE INDEX foo_pkey
id SERIAL PRIMARY KEY ON foo (id);
vall INT NOT NULL,

val2 VARCHAR(32) UNIQUE— _ |CREATE UNIQUE INDEX foo_val2_key
); ON foo (val2);

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.

— Primary Keys

— Unique Constraints
— Foreign Keys (?)

CREATE INDEX foo_vall_key
ON foo (vall);

CREATE TABLE foo (CREATE TABLE bar (
id SERIAL PRIMARY , — id INT REFERENCES foo (vall),
vall INT NOT NULLK val VARCHAR(32)
val2 VARCHAR(32) UNIQUE);

);

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.

— Primary Keys

— Unique Constraints
— Foreign Keys (?)

CREATE INDEX foo_vall_key
ON foo (vall);

CREATE TABLE foo (CREATE TABLE bar (
id SERIAL PRIMARY , — id INT REFERENCES fooX1),
vall INT NOT NULLK val VARCHAR(32)
val2 VARCHAR(32) UNIQUE);

);

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.

— Primary Keys

— Unique Constraints

— Foreign Keys (?)

CREATE TABLE foo (CREATE TABLE bar (
id SERIAL PRIMARY KEY, id INT REFERENCES foo (vall),
vall INT NOT NULL UNIQUE, val VARCHAR(32)
val2 VARCHAR(32) UNIQUE);

);

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PARTIAL INDEXES

Create an index on a subset of the
entire table. This potentially reduces
its size and the amount of overhead
to maintain it.

One common use case is to partition

indexes by date ranges.
— Create a separate index per month, year.

& & CARNEGIE MELLON
=2 DATABASE GROUP

CREATE INDEX idx_foo
ON foo (a,

b)

|WHERE cC = 'WuTang'l;

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PARTIAL INDEXES

Create an index on a subset of the CREATE INDEX idx_foo
entire table. This potentially reduces WHEgII\EI oe gv&\]l’Tb) '
its size and the amount of overhead (WHERE c = 'WuTang'j;

to maintain it. SELECT b FROM foo

_ . WHERE a = 123
One common use case is to partition AND c = 'WuTang';

indexes by date ranges.
— Create a separate index per month, year.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

COVERING INDEXES

[f all of the fields needed to process [CREATE INDEX idx_foo

the query are available in an index, ON foo L)
then the DBMS does not need to
retrieve the tuple.

SELECT b FFROM
WHERE [< 123;

This reduces contention on the
DBMS's buffer pool resources.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INDEX INCLUDE COLUMNS

Embed additional columns in indexes |CREATE INDEX idx_foo
to support index-only queries. ON foo (a, b)

[INCLUDE ()]

Not part of the search key.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INDEX INCLUDE COLUMNS

Embed additional columns in indexes |CREATE INDEX idx_foo

to support index-only queries. INLL_USE_Z;-:(&]’ b)
Not part of the search key.

SELECT|b|FROM foo
WHERE|a|= 123
AND ¢ = '"WuTang';

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INDEX INCLUDE COLUMNS

Embed additional columns in indexes |CREATE INDEX idx_foo

to support index-only queries. INLL_USE_Z;-:(&]’ b)
Not part of the search key. T

SELECT|b|FROM too
WHERE|a|= 123
AND|c|= 'WuTang';

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys |SELECT * FROM users
in the same way that they appear in WHERE E>XI-'I-RRACT1<dO\'N i
their base table. OM login) = 2;

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys |SELECT * FROM users
in the same way that they appear in WHERE iXTRACdeOW i
their base table. FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys |SELECT * FROM users
in the same way that they appear in WHERE E>XI-'I-RRACT1<dO\'N i
their base table. OM login) = 2;

. CREATE INDEX _user_login
You can use expressions when ON users in);

declaring an index.

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys |SELECT * FROM users
in the same way that they appear in WHERE ixgggﬁ'rl(dow _
their base table. ogin) = 2;

. CREATE INDEX _user_login
You can use expressions when ON users in);

declaring an index.

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

?j CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when

SELECT * FROM users

WHERE |[EXTRACT (dow

S FROM login) = 2

CREATE INDEX

ON userinn);

_user_login

declaring an index.

ON users

CREATE INDEX idx_user_login

& & CARNEGIE MELLON
=2 DATABASE GROUP

(EXTRACT (dow FROM login))

~ b

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys |SELECT * FROM users

in the same way that they appear in
their base table.

WHERE |[EXTRACT (dow

S FROM login) = 2

You can use expressions when

CREATE INDEX _user_login
ON users in);

declaring an index.

ON users

CREATE INDEX idx_user_login

(EXTRACT (dow FROM login))

~ b

CREATE INDEX idx_user_login
ON foo (login)

& 3 CARNEGIE MELLON WHERE EXTRACT(dow FROM login) = 2

=
A e

=2 DATABASE GROUP

SO o 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.

All operations have to linear search.
— Average Cost: O(N)

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OBSERVATION

The easiest way to implement a dynamic order-

preserving index is to use a sorted linked list.

All operations have to linear search.
— Average Cost: O(N)

®
K1| @

— K2

1
— K3

- K4

K5

®
o

1
— K7

o——>
o——>

& & CARNEGIE MELLON

=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OBSERVATION

The easiest way to implement a dynamic order-

preserving index is to use a sorted linked list.

All operations have to linear search.
— Average Cost: O(N)

K1

O
ﬂ
| &

@

— K2

1
— K3

- K4

K5

®
=
-

1
— K7

b
o——>
o——>

& & CARNEGIE MELLON

=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

& & CARNEGIE MELLON
=% DATABASE GROUP

L/

-

SKIP LISTS

Multiple levels of linked lists with
extra pointers that skip over
intermediate nodes.

Maintains keys in sorted order
without requiring global rebalancing.

Skip Lists: A Probabilistic Alternative to

Balanced Trees

Skip lists are a data structure that can be used in place of balanced trees.
Skip lists use probabilistic bulancing rather than sticily enforced balancing
and as a result the algorithms for insertion and deletion in skip lists are

e simpler and significantly faster than equivalent algoritioms for

batanced trees.

William Pugh

Blnary irees can be wsed fo represersing absiract o types
soch s dicionaries and omdered L. They werk wll when
the clemenas are insersd n & o ceder. Same sece
o uperssions, sch 2 inseting the clesenss in arder, prduce
degenerate dua sirustures iy

e o

Ao giving every fouth node 2 poines o abea (Figure
1<) requires that no more thanl /4] + 2 nodes be examaned.

A node than s & feeward poisters is caied s e Enode.

Tevery (2% 3

maiiain cenain balance otk and asae pocd perfor-
‘Ship ot a4 probabistic 4

afnodes
2% arelevel 2, 12.5% are
appen I she evels of nodes were choven saondy. but n the

Sk lsts e balanced by coasulnag o mdom n
eratoe, Although sip lss have b wors-<ase performince,

peitncr,nstead of panting 2 nodes shead, peint
st e el o Bagher. Tserions e el
P —

b

ranssly whn the ek i nsarted, nond s chamgs. Some
arrasgements ofJevels would pive poor execunce e, bu
‘e will st sueh, erangenmesesare pare, Bocauce dve.

A 31 Xt e . 638
Skip st e balince propertis sasslar 10t of s
T P ——

b random,

sk st ihatskip.
e termedise nodks, | s thes i it

SKIP LIST ALG
Thissecricm givesal

o W
explicily masmining the beance. For many appl
ral represeatatlon than trees. alo

The s

average of | 113 pmters per element (cc even les) and d ot
nequise bulasce o peloety Information w be sieed wlh zach

SKIP LISTS
We bt e 0 <saming cvery nond of e sk when search-
g 2 linked it (Figure 1.1 he st i soeed

s every wiher e af the it s s e 1 i e

s Fetums the corments of

e i key i The dusert aper-
than associaies o specified key wih a new value (nsening the
ey i sl e alresly been presents, Th Delre operation

Each clement i represeniod by & node. the level af which
is choses randamly when e noxe s Inseres without regard
for the number of clements i e data snuctere. A evel
s forsaand poimers, ndenca | thicugh . We 80 Bt

e s st the evel o ke i the mede, Levels e
apped at some appmopriae cansiant MaxLere!, The lrvelof a
Vst the sanimm level urrently in e I Gor 13f the it i
empry). The hvader cd b b foeward pointers levels ane
hough MasLevet. The fswrd poisters o the header st

Jevels bigher than e curren mivdmums level of the 1t polnt
1o NI

RocksDB AN\ MEMSQL WIREDTIGER

10

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=78977

11

SKIP LISTS

A collection of lists at different levels

— Lowest level is a sorted, singly linked list of all keys
— 2nd level links every other key

— 3rd level links every fourth key

— In general, a level has half the keys of one below it

To insert a new key, flip a coin to decide how
many levels to add the new key into.
Provides approximate O(log n) search times.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

12

SKIP LISTS: EXAMPLE

Levels End
o >| 00
“N/4
P MKk2| @ M Kka| @ >| 00
P=N/2 * ?
o K1 o——>|7<+2 o k3 o——»'T(tl o) k6| o1 00
=N {v1 V2 V3 V4 V6

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

12

SKIP LISTS: EXAMPLE

NKk2| @ NK4| ® ->| 00
* *
o——>|7<+2 o k3 o——>|7<t1 o) K6 5 00
V2 V3 V4 V6

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

12

SKIP LISTS: EXAMPLE

Levels End

[P=N74]
o k2| @ k4| @ 00
[P=N72] o 0 E

o K1 o——>|7<+2 o k3 o——>|7<t1 o) k6| o1 00

LN (g V2 V3 V4 V6

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

12

SKIP LISTS: EXAMPLE

Levels End
o >| 00
P=N/4

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

12

SKIP LISTS: EXAMPLE

Levels End
O >| 00
—N/4

o k1| o k2| e k3| e k4| ®) k6| @ 00
=N 1lv1 V2 V3 V4 V6

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: EXAMPLE

Levels End
P MKk2| @ N Kka| @ >|oo
P=N/2 ? ?
o k1 o——>|7<+2 o[k3 o——>|7<tl o k6| o4 0o
=N {v1 V2 V3 V4 V6

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

13

Insert K5
L evels End
o >| 00
“N/4
P MKko| @ M K4 >| 00
P=N/2
) ¢) ¢
o k1 —>|7<+2 T o——>|7<t1 k6| @f{ oo
=N 1lv1 V2 V3 V4 V6

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

13

Insert K5
Levels End

P K5 >| 00
“N/4 5
-

P MKko| @ M K4 K5 >| 00

P=N/2

) ¢) ¢) ¢
,|+ _,|_+ 3

o k1 k2| o k3| o] k4 K5 K6 | @] 00

=N | |v1 V2 V3 V4 V5 V6

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

13

Insert K5
Levels End
P K5 >| 00
“N/4
) ¢
-
P MKko| @ M K4 K5 >| 00
P=N/2
) ¢) ¢) ¢
o k1 —>|7<+2 o «3 o——>|7<t; k5| e ke | @4 00
=N | |v1 V2 V3 V4 V5 V6

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: INSERT

13

Insert K5
Levels End

P K5 >| 00
“N/4 5
-

P MKko| @ M K4 K5 >| 00

P=N/2

) ¢) ¢) ¢

o k1 —>|7<+2 T o——>|7<t; K5 k6| @f{ oo

=N | |v1 V2 V3 V4 V5 V6

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

13

SKIP LISTS: INSERT

Insert K5
Levels End
® K5| @ >| (00
—N/4 o

P MKko| @ M kg | o 00
P=N/2
) ¢) ¢

o k1 o——>|7<+2 o K3 o——>|7<t1 o k5| e1-| k6| o100
=N V1 V2 V3 V4 V5 Vé6

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

13

SKIP LISTS: INSERT

Insert K5

Levels End
° K5 00
“N/4

P MKko| @ N ka| e+ k5| @ 00
P=N/2 ? * *

,|+ _,|_+ ¥

o k1| o k2| o1 k3| e k4| e k5| @1 k6| @4 00
=N | |v1 V2 V3 V4 V5 V6

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

14

SKIP LISTS: SEARCH

Find K3
Levels End
P » k5| @ >|oo
“N/4
) ¢
v
P NKk2| @ N ka| o4 k5| @ >|oo
P=N/2 ’ ? *
o k1 o——>|7<+2 o K3 o——»'T(tl o——>|7<+5 o K6 | e 00
=N | lv1 V2 V3 V4 V5 V6

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: SEARCH

14

Find K3
Levels End
i K3<K5 (5 ’E
_N/4
o MKk2| @ » K4 k5| ® >| 00
N2
*) ¢ *
o k1 o——>|7<+2 o K3 o——»'T(tl —>|7<+5 o K6 | e 00
=N lv1 V2 V3 V4 V5 V6

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: SEARCH

14

Find K3

Levels End

o K3<K5 P ’E
“N/4 :
v

? K3>K2 K2 | k2| o4 «5 =)
N2 5 5

o k1| e k2| e k3 o——»'T(tl o——>|7<+5 — k6 | @ 00

P=N"11v1 V2 V3 V4 V5 V6

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

14

SKIP LISTS: SEARCH
Find K3

Levels End
o K3<K5 rar ’E
P=N/4 ?
v
P=N/2
* *
o k1 o——>|7<+2 o k3| o k4 o——>|7<+5 o k6 | e 00
P=N"11v1 V2 V3 V4 V5 V6

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

14

SKIP LISTS: SEARCH
Find K3

Levels End
. K3<K5 T e @
P=N/4 ?
v
° K3>K2 rar K3<K4 | ka] e k5] @ »E
P=N/2 ’ ? ?
o k1 o——»'szL 3 K4 o——>|7<+5 o k6 | e 00
P=N"11v1 V2 V3 V4 V5 V6

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15

SKIP LISTS: DELETE

First logically remove a key from the index by
setting a flag to tell threads to ignore.

Then physically remove the key once we know
that no other thread is holding the reference.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

16

End

B

B

k6| ®

Delete K5
Levels

P M K5
“N/4 5

v
P MKko| @ o ka| e k5
o+ K1 o——>|7<+2 Pl N o——>|7<t1 o——>|7<+5
Novi A (v B (v |ve B | Vs

& & CARNEGIE MELLON
=2 DATABASE GROUP

Ve

B

Del
false

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

16

End

B

Delete K5
Levels
@
“N/4
P MKko| @ M K4
P=N/2 ’ ?
o+ K1 o——>|7<+2 Pl N o——>|7<t1
Nollvi el |2 (v | V4

& & CARNEGIE MELLON
=2 DATABASE GROUP

B

K6| @
V6 Jie

B

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

16

End

Delete K5
Levels

P K5
“N/4 5

v
P MKko| @ o ka| e k5
o+ K1 o——>|7<+2 Pl N o——>|7<t1 o——>|7<+5
Novi A (v B (v |ve B | Vs

& & CARNEGIE MELLON
=2 DATABASE GROUP

K6o>|2

Del
V6 false

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

16

End

B

8]

Delete K5
| evels

P K5
“N/4 5

v
P MKko| @ NKka| @ K5
o+ K1 o——>|7<+2 Pl N o——>|7<t1 o) k5
Novi A (v B (v |ve B | Vs

& & CARNEGIE MELLON
=2 DATABASE GROUP

K6| @
V6 Jie

B

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

16

End

B

8]

Delete K5
| evels

P K5
“N/4 5

v
P MKko| @ NKka| @ K5
o+ K1 o——>|7<+2 Pl N o——>|7<t1 © K5
NoviE (v B (v |ve B || Vs

& & CARNEGIE MELLON
=2 DATABASE GROUP

N k6| @

Del
V6 false

B

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SKIP LISTS: DELETE

16

End

B

8]

Delete K5

Levels

®

“N/4

P MKko| @ M Kka| @
P=N/2 ’ ?

o+ K1 o——>|7<+2 Pl N o——>|7<t1 °
N va B (v (v | v4

& & CARNEGIE MELLON
=2 DATABASE GROUP

N k6| @

Del
V6 false

B

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

17

SKIP LISTS

Advantages:

— Uses less memory than a typical B+Tree if you don'’t
include reverse pointers.

— Insertions and deletions do not require rebalancing.

Disadvantages:

— Not disk/cache friendly because they do not optimize
locality of references.
— Reverse search is non-trivial.

c;_’ CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

18

RADIX TREE

Represent keys as individual digits. This allows

threads to examine prefixes one-by-one instead of

comparing entire key.

— The height of the tree depends on the length of keys.

— Does not require rebalancing

— The path to a leaf node represents the key of the leaf

— Keys are stored implicitly and can be reconstructed from
paths.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE

B

Y T

H
v
H

Trie

r
g o e
m

Keys: HELLO, HAT, HAVE

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE
Trie

Keys:|HELLOJ HAT, HAVE

& & CARNEGIE MELLON

19

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TRIE VS. RADIX TREE
Trie

ks

Y T

H
v
H

r
g o e
m

Keys: HELLOJHAT, HAVE

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

19

TRIE VS. RADIX TREE
Trie Radix Tree

V
—T VE T

X

H
ﬂL\AL ELLO A
5 o
e

v
u

r
g o e
m

Keys: HELLO, HAT, HAVE

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

19

TRIE VS. RADIX TREE

Trie Radix Tree
%
L v _HT
o
Ly Eo+
o
0 i Keys: HAT, HAVE

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

RADIX TREE: MODIFICATIONS

<L

[ELLO

X =
==

|
ety

& & CARNEGIE MELLON
=2 DATABASE GROUP

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

20

RADIX TREE: MODIFICATIONS

Insert HAIR

<L

[ELLO A
’ A
T
}
X

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

20

RADIX TREE: MODIFICATIONS

Insert HAIR

I
[E LlLO A\,_
i) [VE T
v v
X H

nu—EI

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

RADIX TREE: MODIFICATIONS

Insert HAIR
Delete HAT, HAVE

& & CARNEGIE MELLON
=2 DATABASE GROUP

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

20

RADIX TREE: MODIFICATIONS

H Insert HAIR
i Delete HAT, HAVE
[E LlLO A
H IR

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

20

RADIX TREE: MODIFICATIONS

Insert HAIR
Delete HAT, HAVE

I
[ELLO A

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

RADIX TREE: MODIFICATIONS

Insert HAIR
Delete HAT, HAVE

H
4

[ELLO AIR
¢ 15

X o

& & CARNEGIE MELLON
=2 DATABASE GROUP

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

21

RADIX TREE: BINARY COMPARABLE KEYS

Not all attribute types can be decomposed into

binary comparable digits for a radix tree.

— Unsigned Integers: Byte order must be flipped for little
endian machines.

— Signed Integers: Flip two’s-complement so that negative
numbers are smaller than positive.

— Floats: Classify into group (neg vs. pos, normalized vs.
denormalized), then store as unsigned integer.

— Compound: Transform each attribute separately.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

RADIX TREE: BINARY COMPARABLE KEYS

Int Key: 168496141

\ 4
Hex Key: 6A @B 0C @D
OA oD
oB oC
oC oB
oD OA

Big Endian Little Endian

& & CARNEGIE MELLON

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

22

RADIX TREE: BINARY COMPARABLE KEYS

OA}
OFOFOF OB

& & CARNEGIE MELLON
=2 DATABASE GROUP

Int Key: 168496141

\ 4
Hex Key: A 0B 0C 6D
PA oD
0B eC
eC 0B
oD OA
Big Endian Little Endian

CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

22

RADIX TREE: BINARY COMPARABLE KEYS

Int Key: 168496141

\ 4
Hex Key: 6A @B 0C @D
OA oD
oB oC
oC oB
oD OA

Big Endian Little Endian

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

IN-MEMORY TABLE INDEXES

Processor: 1 socket, 10 cores w/ 2xHT
Workload: 50m Random Integer Keys (64-bit)

mOpen Bw-Tree mB+Tree mSkip List Radix

360 51.5
240 —
)
(=
O
© 20
©
o
@)
O _
Insert-Only Read-Only Read/Update
& & CARNEGIE MELLON Source: Zigi Wang

=2 DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://github.com/wangziqi2016/index-microbench

24

OBSERVATION

The tree indexes that we've discussed so far are

useful for "point" and "range" queries:
— Find all customers in the 15217 zip code.
— Find all orders between June 2018 and September 2018.

They are not good at keyword searches:
| — Find all Wikipedia articles that contain the word "Pavlo" |

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

WIKIPEDIA EXAMPLE

25

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,

);.

A

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT

);

—® S REFERENCES revisions (revID),

content TEXT,

);

CREATE TABLE revisions (
revID INT PRIMARY KEY,
® userID INT REFERENCES useracct (userlID),
ageID INT REFERENCES pages (pagelD)®

updated DATETIME

A

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

WIKIPEDIA EXAMPLE

If we create an index on the content CREATE INDEX idx_rev_cntnt
attribute, what does that actually do? ON revisions (content);

This doesn't help our query. SELECT pageID FROM revisions
WHERE content LIKE '%Pavlo%';

Our SQL is also not correct...

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

27

INVERTED INDEX

An inverted index stores a mapping of words to
records that contain those words in the target

attribute.
— Sometimes called a full-text search index.
— Also called a concordance in old (like really old) times.

The major DBMSs support these natively.

There are also specialized DBMSs. :
& elasticsearch

SOU‘,’? < Sphinx

DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

28

QUERY TYPES

Phrase Searches

— Find records that contain a list of words in the given
order.

Proximity Searches
— Find records where two words occur within n words of
each other.

Wildcard Searches

— Find records that contain words that match some pattern
(e.g., regular expression).

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

29

DESIGN DECISIONS

Decision #1: What To Store

— The index needs to store at least the words contained in
each record (separated by punctuation characters).
— Can also store frequency, position, and other meta-data.

Decision #2: When To Update

— Maintain auxiliary data structures to "stage" updates and
then update the index in batches.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

31

CONCLUSION

B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
— Examples: R-Tree, Quad-Tree, KD-Tree
— This is covered in CMU 15-826.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://boston.lti.cs.cmu.edu/classes/11-642/
http://www.cs.cmu.edu/~christos/courses/826.S17/

32

NEXT CLASS

How to make indexes thread-safe!

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-445/645 (Fall 2018)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

