
Database Systems

15-445/15-645

Fall 2018

Andy Pavlo
Computer Science
Carnegie Mellon Univ.AP

Lecture #08

Trees Indexes
(Part II)

https://db.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2018)

ADMINISTRIVIA

Project #1 is due Wednesday Sept 26th @ 11:59pm

Homework #2 is due Friday Sept 28th @ 11:59pm

Project #2 will be released on Wednesday Sept
26th. First checkpoint is due Monday Oct 8th.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TODAY'S AGENDA

Additional Index Usage

Skip Lists

Radix Trees

Inverted Indexes

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.
→ Primary Keys
→ Unique Constraints
→ Foreign Keys (?)

4

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);

CREATE UNIQUE INDEX foo_pkey
ON foo (id);

CREATE UNIQUE INDEX foo_val2_key
ON foo (val2);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.
→ Primary Keys
→ Unique Constraints
→ Foreign Keys (?)

4

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);

CREATE TABLE bar (
id INT REFERENCES foo (val1),
val VARCHAR(32)

);

CREATE INDEX foo_val1_key
ON foo (val1);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.
→ Primary Keys
→ Unique Constraints
→ Foreign Keys (?)

4

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);

CREATE TABLE bar (
id INT REFERENCES foo (val1),
val VARCHAR(32)

);

CREATE INDEX foo_val1_key
ON foo (val1);

X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints.
→ Primary Keys
→ Unique Constraints
→ Foreign Keys (?)

4

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL UNIQUE,
val2 VARCHAR(32) UNIQUE

);

CREATE TABLE bar (
id INT REFERENCES foo (val1),
val VARCHAR(32)

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTIAL INDEXES

Create an index on a subset of the
entire table. This potentially reduces
its size and the amount of overhead
to maintain it.

One common use case is to partition
indexes by date ranges.
→ Create a separate index per month, year.

5

CREATE INDEX idx_foo
ON foo (a, b)

WHERE c = 'WuTang';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTIAL INDEXES

Create an index on a subset of the
entire table. This potentially reduces
its size and the amount of overhead
to maintain it.

One common use case is to partition
indexes by date ranges.
→ Create a separate index per month, year.

5

CREATE INDEX idx_foo
ON foo (a, b)

WHERE c = 'WuTang';

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

COVERING INDEXES

If all of the fields needed to process
the query are available in an index,
then the DBMS does not need to
retrieve the tuple.

This reduces contention on the
DBMS's buffer pool resources.

6

SELECT b FROM foo
WHERE a = 123;

CREATE INDEX idx_foo
ON foo (a, b);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

Not part of the search key.

7

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

Not part of the search key.

7

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

Not part of the search key.

7

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys
in the same way that they appear in
their base table.

8

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys
in the same way that they appear in
their base table.

8

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

8

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

8

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

8

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FUNCTIONAL/EXPRESSION INDEXES

The index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

8

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

X

CREATE INDEX idx_user_login
ON foo (login)

WHERE EXTRACT(dow FROM login) = 2;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.

All operations have to linear search.
→ Average Cost: O(N)

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.

All operations have to linear search.
→ Average Cost: O(N)

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.

All operations have to linear search.
→ Average Cost: O(N)

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SKIP LISTS

Multiple levels of linked lists with
extra pointers that skip over
intermediate nodes.

Maintains keys in sorted order
without requiring global rebalancing.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=78977

CMU 15-445/645 (Fall 2018)

SKIP LISTS

A collection of lists at different levels
→ Lowest level is a sorted, singly linked list of all keys
→ 2nd level links every other key
→ 3rd level links every fourth key
→ In general, a level has half the keys of one below it

To insert a new key, flip a coin to decide how
many levels to add the new key into.
Provides approximate O(log n) search times.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: EXAMPLE

12

∞

∞

∞

P=N

P=N/2

P=N/4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: EXAMPLE

12

∞

∞

∞

P=N

P=N/2

P=N/4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: EXAMPLE

12

∞

∞

∞

P=N

P=N/2

P=N/4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: EXAMPLE

12

∞

∞

∞

P=N

P=N/2

P=N/4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: EXAMPLE

12

∞

∞

∞

P=N

P=N/2

P=N/4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: EXAMPLE

12

∞

∞

∞

P=N

P=N/2

P=N/4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: INSERT

13

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: INSERT

13

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5

V5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: INSERT

13

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5

V5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: INSERT

13

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5

V5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: INSERT

13

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5

V5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

SKIP LISTS: INSERT

13

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5

V5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: SEARCH

14

∞

∞

∞

P=N

P=N/2

P=N/4

Find K3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: SEARCH

14

∞

∞

∞

P=N

P=N/2

P=N/4

Find K3

K3<K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: SEARCH

14

∞

∞

∞

P=N

P=N/2

P=N/4

Find K3

K3<K5

K3>K2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: SEARCH

14

∞

∞

∞

P=N

P=N/2

P=N/4

Find K3

K3<K5

K3>K2 K3<K4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: SEARCH

14

∞

∞

∞

P=N

P=N/2

P=N/4

Find K3

K3<K5

K3>K2 K3<K4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SKIP LISTS: DELETE

First logically remove a key from the index by
setting a flag to tell threads to ignore.

Then physically remove the key once we know
that no other thread is holding the reference.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: DELETE

16

∞

∞

∞

P=N

P=N/2

P=N/4

Delete K5

Del
false

Del
false

Del
false

Del
false

Del
false

Del
false

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: DELETE

16

∞

∞

∞

P=N

P=N/2

P=N/4

Delete K5

Del
false

Del
false

Del
false

Del
false

Del
false

Del
false

Del
true

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: DELETE

16

∞

∞

∞

P=N

P=N/2

P=N/4

Delete K5

Del
false

Del
false

Del
false

Del
false

Del
false

Del
false

Del
true

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: DELETE

16

∞

∞

∞

P=N

P=N/2

P=N/4

Delete K5

Del
false

Del
false

Del
false

Del
false

Del
false

Del
false

Del
true

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

SKIP LISTS: DELETE

16

∞

∞

∞

P=N

P=N/2

P=N/4

Delete K5

Del
false

Del
false

Del
false

Del
false

Del
false

Del
false

Del
true

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Levels

SKIP LISTS: DELETE

16

∞

∞

∞

P=N

P=N/2

P=N/4

Delete K5

Del
false

Del
false

Del
false

Del
false

Del
false

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SKIP LISTS

Advantages:
→ Uses less memory than a typical B+Tree if you don’t

include reverse pointers.
→ Insertions and deletions do not require rebalancing.

Disadvantages:
→ Not disk/cache friendly because they do not optimize

locality of references.
→ Reverse search is non-trivial.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE

Represent keys as individual digits. This allows
threads to examine prefixes one-by-one instead of
comparing entire key.
→ The height of the tree depends on the length of keys.
→ Does not require rebalancing
→ The path to a leaf node represents the key of the leaf
→ Keys are stored implicitly and can be reconstructed from

paths.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TRIE VS. RADIX TREE

19

Keys: HELLO, HAT, HAVE

Trie

E
H

L

¤

L

O

A

¤
T

¤

V

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TRIE VS. RADIX TREE

19

Keys: HELLO, HAT, HAVE

Trie

E
H

L

¤

L

O

A

¤
T

¤

V

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TRIE VS. RADIX TREE

19

Keys: HELLO, HAT, HAVE

Trie

E
H

L

¤

L

O

A

¤
T

¤

V

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TRIE VS. RADIX TREE

19

Keys: HELLO, HAT, HAVE

Trie

E
H

L

¤

L

O

A

¤
T

¤

V

E

Radix Tree

ELLO
H

¤

A

¤
T

¤

VE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TRIE VS. RADIX TREE

19

Keys: HELLO, HAT, HAVE

Trie

E
H

L

¤

L

O

A

¤
T

¤

V

E

Radix Tree

ELLO
H

¤

A

¤
T

¤

VE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤¤

TVE

H

A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤¤

TVE

H

A

Insert HAIR

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤¤

TVE

H

A

¤

IR

Insert HAIR

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤¤

TVE

H

A

¤

IR

Insert HAIR

Delete HAT, HAVE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

¤

IR

Insert HAIR

Delete HAT, HAVE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

¤

IR

Insert HAIR

Delete HAT, HAVE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

Insert HAIR

Delete HAT, HAVE
AIR

¤

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: BINARY COMPARABLE KEYS

Not all attribute types can be decomposed into
binary comparable digits for a radix tree.
→ Unsigned Integers: Byte order must be flipped for little

endian machines.
→ Signed Integers: Flip two’s-complement so that negative

numbers are smaller than positive.
→ Floats: Classify into group (neg vs. pos, normalized vs.

denormalized), then store as unsigned integer.
→ Compound: Transform each attribute separately.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: BINARY COMPARABLE KEYS

22

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0A

0B

0C

0D

Big Endian

0D

0C

0B

0A

Little Endian

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: BINARY COMPARABLE KEYS

22

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0A

0B

0C

0D

Big Endian

0D

0C

0B

0A

Little Endian

0F0F0F
0A

¤

0B

¤

0B0F
¤

OF0F

¤

¤¤

0C

0F 0D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RADIX TREE: BINARY COMPARABLE KEYS

22

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0A

0B

0C

0D

Big Endian

0D

0C

0B

0A

Little Endian

0F0F0F
0A

¤

0B

¤

0B0F
¤

OF0F

¤

¤¤

0C

0F 0D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

IN-MEMORY TABLE INDEXES

23

9.94
15.5 13.3

8.09

29
25.1

2.51 2.78 1.51

44.9
51.5

42.9

0

20

40

60

Insert-Only Read-Only Read/Update

O
p

e
ra

ti
o

n
s/

se
c

(M
)

Open Bw-Tree B+Tree Skip List Radix

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Random Integer Keys (64-bit)

Source: Ziqi Wang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://github.com/wangziqi2016/index-microbench

CMU 15-445/645 (Fall 2018)

OBSERVATION

The tree indexes that we've discussed so far are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zip code.
→ Find all orders between June 2018 and September 2018.

They are not good at keyword searches:
→ Find all Wikipedia articles that contain the word "Pavlo"

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

WIKIPEDIA EXAMPLE

25

CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT,
updated DATETIME

);

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT
⮱REFERENCES revisions (revID),

);

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
⋮

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

WIKIPEDIA EXAMPLE

If we create an index on the content
attribute, what does that actually do?

This doesn't help our query.

Our SQL is also not correct...

26

CREATE INDEX idx_rev_cntnt
ON revisions (content);

SELECT pageID FROM revisions
WHERE content LIKE '%Pavlo%';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

INVERTED INDEX

An inverted index stores a mapping of words to
records that contain those words in the target
attribute.
→ Sometimes called a full-text search index.
→ Also called a concordance in old (like really old) times.

The major DBMSs support these natively.
There are also specialized DBMSs.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

QUERY T YPES

Phrase Searches
→ Find records that contain a list of words in the given

order.

Proximity Searches
→ Find records where two words occur within n words of

each other.

Wildcard Searches
→ Find records that contain words that match some pattern

(e.g., regular expression).

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DESIGN DECISIONS

Decision #1: What To Store
→ The index needs to store at least the words contained in

each record (separated by punctuation characters).
→ Can also store frequency, position, and other meta-data.

Decision #2: When To Update
→ Maintain auxiliary data structures to "stage" updates and

then update the index in batches.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCLUSION

B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
→ This is covered in CMU 15-826.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://boston.lti.cs.cmu.edu/classes/11-642/
http://www.cs.cmu.edu/~christos/courses/826.S17/

CMU 15-445/645 (Fall 2018)

NEXT CL ASS

How to make indexes thread-safe!

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

