
Database Systems

15-445/15-645

Fall 2018

Andy Pavlo
Computer Science
Carnegie Mellon Univ.AP

Lecture #09

Index Concurrency
Control

https://db.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2018)

ADMINISTRIVIA

Project #1 is due TODAY!

Homework #2 is due Friday Sept 28th @ 11:59pm

Project #2 first checkpoint is due Monday Oct 8th.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

We assumed that all of the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

We assumed that all of the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://voltdb.com/

CMU 15-445/645 (Fall 2018)

CONCURRENCY CONTROL

A concurrency control protocol is the method that
the DBMS uses to ensure "correct" results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can I see the data that I am

supposed to see?
→ Physical Correctness: Is the internal representation of

the object sound?

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCURRENCY CONTROL

A concurrency control protocol is the method that
the DBMS uses to ensure "correct" results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can I see the data that I am

supposed to see?
→ Physical Correctness: Is the internal representation of

the object sound?

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TODAY'S AGENDA

Latch Modes

Index Crabbing/Coupling

Leaf Scans

Delayed Parent Updates

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LOCKS VS. L ATCHES

Locks
→ Protects the index’s logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protects the critical sections of the index’s internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LOCKS VS. L ATCHES

7

Locks Latches

User transactions Threads

Database Contents In-Memory Data Structures

Entire Transactions Critical Sections

Shared,Exclusive, Update,
Intention

Read,Write

Deadlock Detection & Resolution Avoidance

Waits-for, Timeout, Aborts Coding Discipline

Kept Lock Manager Protected Data Structure

Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2017/papers/06-latching/a16-graefe.pdf

CMU 15-445/645 (Fall 2018)

LOCKS VS. L ATCHES

7

Locks Latches

User transactions Threads

Database Contents In-Memory Data Structures

Entire Transactions Critical Sections

Shared,Exclusive, Update,
Intention

Read,Write

Deadlock Detection & Resolution Avoidance

Waits-for, Timeout, Aborts Coding Discipline

Kept Lock Manager Protected Data Structure

Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2017/papers/06-latching/a16-graefe.pdf

CMU 15-445/645 (Fall 2018)

LOCKS VS. L ATCHES

7

Locks Latches

User transactions Threads

Database Contents In-Memory Data Structures

Entire Transactions Critical Sections

Shared,Exclusive, Update,
Intention

Read,Write

Deadlock Detection & Resolution Avoidance

Waits-for, Timeout, Aborts Coding Discipline

Kept Lock Manager Protected Data Structure

Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2017/papers/06-latching/a16-graefe.pdf
https://15445.courses.cs.cmu.edu/fall2018/schedule.html#oct-31-2018

CMU 15-445/645 (Fall 2018)

L ATCH MODES

Read Mode
→ Multiple threads are allowed to read the

same item at the same time.
→ A thread can acquire the read latch if

another thread has it in read mode.

Write Mode
→ Only one thread is allowed to access the

item.
→ A thread cannot acquire a write latch if

another thread holds the latch in any mode.

8

Read Write

Read X

Write X X

Compatibility Matrix

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+tree index at the same time.

We need to protect from two types of problems:
→ Threads trying to modify the contents of a node at the

same time.
→ One thread traversing the tree while another thread

splits/merges nodes.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38

B+TREE MULTI-THREADED EXAMPLE

10

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38

B+TREE MULTI-THREADED EXAMPLE

10

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38

B+TREE MULTI-THREADED EXAMPLE

10

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

Rebalance!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38

B+TREE MULTI-THREADED EXAMPLE

10

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38

B+TREE MULTI-THREADED EXAMPLE

10

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38

B+TREE MULTI-THREADED EXAMPLE

10

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38

B+TREE MULTI-THREADED EXAMPLE

10

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

41

???

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

L ATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.

Basic Idea:
→ Get latch for parent.
→ Get latch for child
→ Release latch for parent if “safe”.

A safe node is one that will not split or merge
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

L ATCH CRABBING/COUPLING

Search: Start at root and go down; repeatedly,
→ Acquire Rlatch on child
→ Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining Wlatches as needed. Once child is
latched, check if it is safe:
→ If child is safe, release all latches on ancestors.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EXAMPLE #1 SEARCH 38

13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EXAMPLE #1 SEARCH 38

13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

R

It’s safe to release the
latch on A.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EXAMPLE #1 SEARCH 38

13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EXAMPLE #1 SEARCH 38

13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EXAMPLE #1 SEARCH 38

13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EXAMPLE #1 SEARCH 38

13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

14

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

14

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

We may need to coalesce B, so
we can’t release the latch on A.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

14

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

We know that D will not need
to merge with C, so it’s safe to

release latches on A and B.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

14

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

We know that D will not need
to merge with C, so it’s safe to

release latches on A and B.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

14

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

14

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

14

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #3 INSERT 45

15

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #3 INSERT 45

15

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #3 INSERT 45

15

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510
W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #3 INSERT 45

15

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510
W

W

W

I has room so it won’t split,
so we can release B+D.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #3 INSERT 45

15

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

I has room so it won’t split,
so we can release B+D.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

16

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

16

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

16

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
W

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

16

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

16

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

We need to split F so we need to
keep the latch on its parent node.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

16

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W
25

We need to split F so we need to
keep the latch on its parent node.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

16

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W
25

31

We need to split F so we need to
keep the latch on its parent node.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

What was the first step that all of the update
examples did on the B+Tree?

17

20 A
W

Delete 38

20 A
W

Insert 45

20 A
W

Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

What was the first step that all of the update
examples did on the B+Tree?

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

Can we do better?

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

BET TER L ATCHING ALGORITHM

Assume that the leaf node is safe.

Use read latches and crabbing to reach
it, and verify that it is safe.

If leaf is not safe, then do previous
algorithm using write latches.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://link.springer.com/article/10.1007/BF00263762

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

H will not need to coalesce, so
we’re safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

H will not need to coalesce, so
we’re safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #2 DELETE 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

H will not need to coalesce, so
we’re safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W
25We need to split F so we

have to restart and re-
execute like before.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

BET TER L ATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
→ Set latches as if for search, get to leaf, and set Wlatch on

leaf.
→ If leaf is not safe, release all latches, and restart thread

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, Rlatches set on the
first pass to leaf are wasteful.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

The threads in all of the examples so far have
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait

until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #1

24

A

B

3

1 2 3 4

C

T1: Find Keys < 4
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #1

24

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #1

24

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

Do not release latch on C
until thread has latch on B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #1

24

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R R

Do not release latch on C
until thread has latch on B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #1

24

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #2

25

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #2

25

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

R R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #2

25

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #2

25

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Both T1 and T2 now hold
this read latch.

Both T1 and T2 now hold
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #2

25

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Only T1 holds
this read latch.

Only T2 holds
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #3

26

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #3

26

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #3

26

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 cannot acquire
the read latch on C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #3

26

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCAN EXAMPLE #3

26

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a "no-wait" mode.
B+tree code must cope with failed latch
acquisitions.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DEL AYED PARENT UPDATES

Every time a leaf node overflows, we have to
update at least three nodes.
→ The leaf node being split.
→ The new leaf node being created.
→ The parent node.

Blink-Tree Optimization: When a leaf node
overflows, delay updating its parent node.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

Add the new leaf node as a
sibling to F, but do not update C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W
25

31

Add the new leaf node as a
sibling to F, but do not update C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

Add the new leaf node as a
sibling to F, but do not update C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

Update C the next time that a
thread takes a write latch on it.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

25

31

Update C the next time that a
thread takes a write latch on it.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

Update C the next time that a
thread takes a write latch on it.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

38 41

EXAMPLE #4 INSERT 25

29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

Update C the next time that a
thread takes a write latch on it.

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCLUSION

Making a data structure thread-safe seems easy to
understand but it is notoriously difficult in
practice.

We focused on B+Trees here but the same high-
level techniques are applicable to other data
structures.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROJECT #2

You will build a thread-safe B+tree.
→ Page Layout
→ Data Structure
→ STL Iterator
→ Latch Crabbing

We define the API for you. You need to
provide the method implementations.

31

https://15445.courses.cs.cmu.edu/fall2018/project2/

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2018/project2/

CMU 15-445/645 (Fall 2018)

CHECKPOINT #1

Due Date: October 8th @ 11:59pm
Total Project Grade: 40%

Page Layouts
→ How each node will store its key/values in a page.
→ You only need to support unique keys.

Data Structure (Find + Insert)
→ Support point queries (single key).
→ Support inserts with node splitting.
→ Does not need to be thread-safe.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CHECKPOINT #2

Due Date: October 19th @ 11:59pm
Total Project Grade: 60%

Data Structure (Deletion)
→ Support removal of keys with sibling stealing + merging.

Index Iterator
→ Create a STL iterator for range scans.

Concurrent Index
→ Implement latch crabbing/coupling.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DEVELOPMENT HINTS

Follow the textbook semantics and algorithms.
→ See Chapter 15.10

Set the page size to be small (e.g., 512B) when you
first start so that you can see more splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

THINGS TO NOTE

Do not change any file other than the ten that you
have to hand it.

We will provide an updated source tarball. You
will need to copy over your files from Project #1.

Post your questions on Piazza or come to TA
office hours.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PL AGIARISM WARNING

Your project implementation must be
your own work.
→ You may not copy source code from other

groups or the web.
→ Do not publish your implementation on

Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic
Integrity for additional information.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://www.cmu.edu/policies/documents/Academic Integrity.htm

CMU 15-445/645 (Fall 2018)

NEXT CL ASS

We are finally going to discuss how to execute
some damn queries…

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

