
Database Systems

15-445/15-645

Fall 2018

Andy Pavlo
Computer Science
Carnegie Mellon Univ.AP

Lecture #18

Timestamp Ordering
Concurrency Control

https://db.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2018)

ADMINISTRIVIA

Homework #4: Monday Nov 12th @ 11:59pm

Project #3: Monday Nov 19th @ 11:59am

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCURRENCY CONTROL APPROACHES

Two-Phase Locking (2PL)
→ Determine serializability order of conflicting

operations at runtime while txns execute.

Timestamp Ordering (T/O)
→ Determine serializability order of txns before

they execute.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCURRENCY CONTROL APPROACHES

Two-Phase Locking (2PL)
→ Determine serializability order of conflicting

operations at runtime while txns execute.

Timestamp Ordering (T/O)
→ Determine serializability order of txns before

they execute.

3

Pessimistic

Optimistic

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

T/O CONCURRENCY CONTROL

Use timestamps to determine the serializability
order of txns.

If TS(Ti) < TS(Tj), then the DBMS must ensure
that the execution schedule is equivalent to a serial
schedule where Ti appears before Tj.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TIMESTAMP ALLOCATION

Each txn Ti is assigned a unique fixed timestamp
that is monotonically increasing.
→ Let TS(Ti) be the timestamp allocated to txn Ti.
→ Different schemes assign timestamps at different times

during the txn.

Multiple implementation strategies:
→ System Clock.
→ Logical Counter.
→ Hybrid.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TODAY'S AGENDA

Basic Timestamp Ordering Protocol

Optimistic Concurrency Control

Partition-based Timestamp Ordering

Isolation Levels

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

BASIC T/O

Txns read and write objects without locks.

Every object X is tagged with timestamp of the last
txn that successfully did read/write:
→ W-TS(X) – Write timestamp on X
→ R-TS(X) – Read timestamp on X

Check timestamps for every operation:
→ If txn tries to access an object "from the future", it aborts

and restarts.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

BASIC T/O READS

If TS(Ti) < W-TS(X), this violates timestamp
order of Ti with regard to the writer of X.
→ Abort Ti and restart it with same TS.

Else:
→ Allow Ti to read X.
→ Update R-TS(X) to max(R-TS(X), TS(Ti))
→ Have to make a local copy of X to ensure repeatable reads

for Ti.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

BASIC T/O WRITES

If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X)
→ Abort and restart Ti.

Else:
→ Allow Ti to write X and update W-TS(X)
→ Also have to make a local copy of X to ensure repeatable

reads for Ti.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

T
IM

E
Schedule

T1 T2

BASIC T/O EXAMPLE #1

10

BEGIN
R(B)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

T
IM

E
Schedule

T1 T2

BASIC T/O EXAMPLE #1

10

BEGIN
R(B)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

TS(T1)=1 TS(T2)=2

1

Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

T
IM

E
Schedule

T1 T2

BASIC T/O EXAMPLE #1

10

BEGIN
R(B)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

TS(T1)=1 TS(T2)=2

12

Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

T
IM

E
Schedule

T1 T2

BASIC T/O EXAMPLE #1

10

BEGIN
R(B)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

TS(T1)=1 TS(T2)=2

12 2

Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

T
IM

E
Schedule

T1 T2

BASIC T/O EXAMPLE #1

10

BEGIN
R(B)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

TS(T1)=1 TS(T2)=2

1

12 2

Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

T
IM

E
Schedule

T1 T2

BASIC T/O EXAMPLE #1

10

BEGIN
R(B)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

TS(T1)=1 TS(T2)=2

1

12 2

2

Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

T
IM

E
Schedule

T1 T2

BASIC T/O EXAMPLE #1

10

BEGIN
R(B)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

TS(T1)=1 TS(T2)=2

1

12 2

2 2

Database

No violations so both txns
are safe to commit.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

Database
T

IM
E
Schedule

T1 T2

BASIC T/O EXAMPLE #2

11

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

Database
T

IM
E
Schedule

T1 T2

BASIC T/O EXAMPLE #2

11

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

Database
T

IM
E
Schedule

T1 T2

BASIC T/O EXAMPLE #2

11

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

Violation:
TS(T1) < W-TS(A)

T1 cannot overwrite update
by T2, so the DBMS has to

abort it!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

THOMAS WRITE RULE

If TS(Ti) < R-TS(X):
→ Abort and restart Ti.

If TS(Ti) < W-TS(X):
→ Thomas Write Rule: Ignore the write and allow the txn

to continue.
→ This violates timestamp order of Ti.

Else:
→ Allow Ti to write X and update W-TS(X)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

Database
T

IM
E
Schedule

T1 T2

BASIC T/O EXAMPLE #2

13

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

Database
T

IM
E
Schedule

T1 T2

BASIC T/O EXAMPLE #2

13

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Object R-TS W-TS

A 0 0

B 0 0

Database
T

IM
E
Schedule

T1 T2

BASIC T/O EXAMPLE #2

13

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

We do not update
W-TS(A)

Ignore the write and allow
T1 to commit.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

BASIC T/O

Generates a schedule that is conflict serializable if
you do not use the Thomas Write Rule.
→ No deadlocks because no txn ever waits.
→ Possibility of starvation for long txns if short txns keep

causing conflicts.

Permits schedules that are not recoverable.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

RECOVERABLE SCHEDULES

A schedule is recoverable if txns commit only
after all txns whose changes they read, commit.

Otherwise, the DBMS cannot guarantee that txns
read data that will be restored after recovering
from a crash.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

T
IM

E
Schedule

T1 T2

RECOVERABLE SCHEDULES

16

BEGIN
W(A)

⋮ BEGIN
R(A)
W(B)
COMMIT

T2 is allowed to read the
writes of T1.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

T
IM

E
Schedule

T1 T2

RECOVERABLE SCHEDULES

16

BEGIN
W(A)

⋮ BEGIN
R(A)
W(B)
COMMIT

T2 is allowed to read the
writes of T1.

This is not recoverable
because we cannot restart T1.

T1 aborts after T2 has
committed.

ABORT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

BASIC T/O PERFORMANCE ISSUES

High overhead from copying data to txn's
workspace and from updating timestamps.

Long running txns can get starved.
→ The likelihood that a txn will read something from a

newer txn increases.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

If you assume that conflicts between txns are rare
and that most txns are short-lived, then forcing
txns to wait to acquire locks adds a lot of overhead.

A better approach is to optimize for the no-
conflict case.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OPTIMISTIC CONCURRENCY CONTROL

The DBMS creates a private
workspace for each txn.
→ Any object read is copied into workspace.
→ Modifications are applied to workspace.

When a txn commits, the DBMS
compares workspace write set to see
whether it conflicts with other txns.

If there are no conflicts, the write set
is installed into the "global" database.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=319567

CMU 15-445/645 (Fall 2018)

OCC PHASES

#1 – Read Phase:
→ Track the read/write sets of txns and store their writes in

a private workspace.

#2 – Validation Phase:
→ When a txn commits, check whether it conflicts with

other txns.

#3 – Write Phase:
→ If validation succeeds, apply private changes to database.

Otherwise abort and restart the txn.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

123 0A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

123 0A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

123 0A 123 0A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

123 0A 123 0A

TS(T2)=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

123 0A 123 0A

TS(T2)=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

123 0A

TS(T2)=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

456 1123 0A 456 ∞

TS(T2)=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

456 1123 0A 456 ∞

TS(T2)=1

TS(T1)=2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

T
IM

E
Schedule

T1 T2

OCC EXAMPLE

21

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

456 1

456 2

123 0A 456 ∞

TS(T2)=1

TS(T1)=2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC VALIDATION PHASE

The DBMS needs to guarantee only serializable
schedules are permitted.

Ti checks other txns for RW and WW conflicts
and makes sure that all conflicts go one way (from
older txns to younger txns).

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC SERIAL VALIDATION

Maintain global view of all active txns.

Record read set and write set while txns are
running and write into private workspace.

Execute Validation and Write phase inside a
protected critical section.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC VALIDATION PHASE

Each txn's timestamp is assigned at the beginning
of the validation phase.

Check the timestamp ordering of the committing
txn with all other running txns.

If TS(Ti) < TS(Tj), then one of the following
three conditions must hold…

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC VALIDATION STEP #1

Ti completes all three phases before Tj begins.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC VALIDATION STEP #1

26

BEGIN
READ
VALIDATE
WRITE
COMMIT

BEGIN
READ
VALIDATE
WRITE
COMMIT

T
IM

E
Schedule

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC VALIDATION STEP #2

Ti completes before Tj starts its Write phase, and
Ti does not write to any object read by Tj.
→ WriteSet(Ti)∩ ReadSet(Tj) = Ø

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #2

28

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN

READ
R(A)

VALIDATE
WRITE
COMMIT

123 0A 123 0A∞

Object Value W-TS

A 123 0

- - -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #2

28

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN

READ
R(A)

VALIDATE
WRITE
COMMIT

123 0A 123 0A∞

T1 has to abort even though
T2 will never write to the

database.

Object Value W-TS

A 123 0

- - -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #2

29

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(A)
VALIDATE

WRITE
COMMIT

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

456 0A 123 0A∞

Object Value W-TS

A 123 0

- - -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #2

29

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(A)
VALIDATE

WRITE
COMMIT

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

456 0A 123 0A∞

Object Value W-TS

A 123 0

- - -

Safe to commit T1 because we
know that T2 will not write.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC VALIDATION STEP #3

Ti completes its Read phase before Tj completes
its Read phase

And Ti does not write to any object that is either
read or written by Tj:
→ WriteSet(Ti)∩ ReadSet(Tj) = Ø
→ WriteSet(Ti)∩ WriteSet(Tj) = Ø

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

Object Value W-TS

A 123 0

B XYZ 0

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #3

31

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

123 0A XYZ 0B456 ∞

TS(T1)=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

Object Value W-TS

A 123 0

B XYZ 0

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #3

31

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

123 0A XYZ 0B456 ∞

TS(T1)=1

Safe to commit T1 because
T2 sees the DB after T1 has

executed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

Object Value W-TS

A 123 0

B XYZ 0

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #3

31

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

123 0A XYZ 0B456 ∞

456 1

TS(T1)=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T2 Workspace

Object Value W-TS

A 123 0

B XYZ 0

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #3

31

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

XYZ 0B

456 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Database

Object Value W-TS

- - -

- - -

T2 Workspace

Object Value W-TS

A 123 0

B XYZ 0

T
IM

E
Schedule

T1 T2

OCC VALIDATION STEP #3

31

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

XYZ 0B

456 1A

456 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC OBSERVATIONS

OCC works well when the # of conflicts is low:
→ All txns are read-only (ideal).
→ Txns access disjoint subsets of data.

If the database is large and the workload is not
skewed, then there is a low probability of conflict,
so again locking is wasteful.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OCC PERFORMANCE ISSUES

High overhead for copying data locally.

Validation/Write phase bottlenecks.

Aborts are more wasteful than in 2PL because they
only occur after a txn has already executed.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

When a txn commits, all previous T/O schemes
check to see whether there is a conflict with
concurrent txns.
→ This requires latches.

If you have a lot of concurrent txns, then this is
slow even if the conflict rate is low.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

Split the database up in disjoint subsets called
horizontal partitions (aka shards).

Use timestamps to order txns for serial execution
at each partition.
→ Only check for conflicts between txns that are running in

the same partition.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DATABASE PARTITIONING

36

CREATE TABLE customer (
c_id INT PRIMARY KEY,
c_email VARCHAR UNIQUE,
⋮

); CREATE TABLE orders (
o_id INT PRIMARY KEY,
o_c_id INT REFERENCES

⮱customer (c_id),
⋮

); CREATE TABLE oitems (
oi_id INT PRIMARY KEY,
oi_o_id INT REFERENCES

⮱orders (o_id),
oi_c_id INT REFERENCES

⮱orders (o_c_id),
⋮

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

HORIZONTAL PARTITIONING

37

BEGIN

Application
Server

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

HORIZONTAL PARTITIONING

37

COMMIT

Application
Server

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

Txns are assigned timestamps based on when they
arrive at the DBMS.

Partitions are protected by a single lock:
→ Each txn is queued at the partitions it needs.
→ The txn acquires a partition’s lock if it has the lowest

timestamp in that partition’s queue.
→ The txn starts when it has all of the locks for all the

partitions that it will read/write.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O READS

Txns can read anything that they want at the
partitions that they have locked.

If a txn tries to access a partition that it does not
have the lock, it is aborted + restarted.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O WRITES

All updates occur in place.
→ Maintain a separate in-memory buffer to undo changes if

the txn aborts.

If a txn tries to write to a partition that it does not
have the lock, it is aborted + restarted.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

41

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

Server #1

Server #2

Txn Queue

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

41

BEGIN

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

Server #1

Server #2

Txn Queue

BEGIN

Server1: 100

Server2: 101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

41

BEGIN

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

Server #1

Server #2

Txn Queue

BEGIN

Server1: 100

Server2: 101

Txn #100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

41

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

Server #1

Server #2

Txn Queue

BEGIN

Server1: 100

Server2: 101

Txn #100Get C_ID=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

41

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

Server #1

Server #2

Txn Queue

BEGIN

Server1: 100

Server2: 101

Txn #100COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

41

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

Server #1

Server #2

Txn Queue

BEGIN

Server2: 101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITION-BASED T/O

41

Partitions

OITEMS

ORDERS

CUSTOMERS

OITEMS

ORDERS

CUSTOMERS

Customers
1-1000

Customers
1001-2000

Server #1

Server #2

Txn Queue

BEGIN

Server2: 101
Txn #101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PARTITIONED T/O PERFORMANCE ISSUES

Partition-based T/O protocol is fast if:
→ The DBMS knows what partitions the txn needs before it

starts.
→ Most (if not all) txns only need to access a single

partition.

Multi-partition txns causes partitions to be idle
while txn executes.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DYNAMIC DATABASES

Recall that so far we have only dealing with
transactions that read and update data.

But now if we have insertions, updates, and
deletions, we have new problems…

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

THE PHANTOM PROBLEM

44

BEGIN

COMMIT

BEGIN

COMMIT

INSERT INTO people
(age=96, status='lit')

72

96

T
IM

E
Schedule

T1 T2

SELECT MAX(age)
FROM people
WHERE status='lit'

CREATE TABLE people (
id SERIAL,
name VARCHAR,
age INT,
status VARCHAR

);

SELECT MAX(age)
FROM people
WHERE status='lit'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

WTF?

How did this happen?
→ Because T1 locked only existing records and not ones

under way!

Conflict serializability on reads and writes of
individual items guarantees serializability only if
the set of objects is fixed.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PREDICATE LOCKING

Lock records that satisfy a logical predicate:
→ Example: status='lit'

In general, predicate locking has a lot of locking
overhead.

Index locking is a special case of predicate locking
that is potentially more efficient.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

INDEX LOCKING

If there is a dense index on the status field then the
txn can lock index page containing the data with
status='lit'.

If there are no records with status='lit', the
txn must lock the index page where such a data
entry would be, if it existed.

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

LOCKING WITHOUT AN INDEX

If there is no suitable index, then the txn must
obtain:
→ A lock on every page in the table to prevent a record’s

status='lit' from being changed to lit.
→ The lock for the table itself to prevent records with

status='lit' from being added or deleted.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

REPEATING SCANS

An alternative is to just re-execute every scan
again when the txn commits and check whether it
gets the same result.
→ Have to retain the scan set for every range query in a txn.
→ Andy doesn't know of any commercial system that does

this (only just Silo?).

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://github.com/stephentu/silo

CMU 15-445/645 (Fall 2018)

WEAKER LEVELS OF ISOL ATION

Serializability is useful because it allows
programmers to ignore concurrency issues.

But enforcing it may allow too little concurrency
and limit performance.

We may want to use a weaker level of consistency
to improve scalability.

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ISOL ATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of
exposing txns to uncommitted changes:
→ Dirty Reads
→ Unrepeatable Reads
→ Phantom Reads

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ISOL ATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable,
no dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms and unrepeatable
reads may happen.

READ UNCOMMITTED: All of them may happen.

52

Is
o

la
ti

o
n

 (
H

ig
h

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ISOL ATION LEVELS

53

Dirty Read
Unrepeatable

Read Phantom

SERIALIZABLE No No No

REPEATABLE READ No No Maybe

READ COMMITTED No Maybe Maybe

READ UNCOMMITTED Maybe Maybe Maybe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ISOL ATION LEVELS

SERIALIZABLE: Obtain all locks first; plus index
locks, plus strict 2PL.

REPEATABLE READS: Same as above, but no index
locks.

READ COMMITTED: Same as above, but S locks are
released immediately.

READ UNCOMMITTED: Same as above, but allows
dirty reads (no S locks).

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SQL-92 ISOL ATION LEVELS

You set a txn's isolation level before
you execute any queries in that txn.

Not all DBMS support all isolation
levels in all execution scenarios
→ Replicated Environments

The default depends on implementation…

55

SET TRANSACTION ISOLATION LEVEL
<isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL
<isolation-level>;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ISOL ATION LEVELS (2013)

56

Default Maximum

Actian Ingres 10.0/10S SERIALIZABLE SERIALIZABLE

Aerospike READ COMMITTED READ COMMITTED

Greenplum 4.1 READ COMMITTED SERIALIZABLE

MySQL 5.6 REPEATABLE READS SERIALIZABLE

MemSQL 1b READ COMMITTED READ COMMITTED

MS SQL Server 2012 READ COMMITTED SERIALIZABLE

Oracle 11g READ COMMITTED SNAPSHOT ISOLATION

Postgres 9.2.2 READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

ScaleDB 1.02 READ COMMITTED READ COMMITTED

VoltDB SERIALIZABLE SERIALIZABLE
Source: Peter Bailis

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

CMU 15-445/645 (Fall 2018)

SQL-92 ACCESS MODES

You can provide hints to the DBMS
about whether a txn will modify the
database during its lifetime.

Only two possible modes:
→ READ WRITE (Default)
→ READ ONLY

Not all DBMSs will optimize execution if you set
a txn to in READ ONLY mode.

57

SET TRANSACTION <access-mode>;

BEGIN TRANSACTION <access-mode>;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCLUSION

Every concurrency control can be broken down
into the basic concepts that I've described in the
last two lectures.

I'm not showing benchmark results because I don't
want you to get the wrong idea.

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

NEXT CL ASS

Multi-Version Concurrency Control

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

