
Database Systems

15-445/15-645

Fall 2018

Andy Pavlo
Computer Science
Carnegie Mellon Univ.AP

Lecture #22

Distributed OLTP
Databases (Part I)

https://db.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2018)

ADMINISTRIVIA

Project #3: TODAY @ 11:59am

Homework #5: Monday Dec 3rd @ 11:59pm

Project #4: Monday Dec 10th @ 11:59pm

Extra Credit: Wednesday Dec 12th @11:59pm

Final Exam: Sunday Dec 16th @ 8:30am

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ADMINISTRIVIA

Monday Dec 3rd – VoltDB Lecture
→ Dr. Ethan Zhang (Lead Engineer)

Wednesday Dec 5th – Potpourri + Review
→ Vote for what system you want me to talk about.
→ https://cmudb.io/f18-systems

Wednesday Dec 5th – Extra Credit Check
→ Submit your extra credit assignment early to get feedback

from me.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://cmudb.io/f18-systems

CMU 15-445/645 (Fall 2018)

UPCOMING DATABASE EVENTS

Swarm64 Tech Talk
→ Thursday November 29th @ 12pm
→ GHC 8102 ← Different Location!

VoltDB Research Talk
→ Monday December 3rd @ 4:30pm
→ GHC 8102

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/hardware-accelerated-databases-karsten-ronner-swarm64/
https://db.cs.cmu.edu/events/db-seminar-fall-2018-ethan-zhang-voltdb/

CMU 15-445/645 (Fall 2018)

PARALLEL VS. DISTRIBUTED

Parallel DBMSs:
→ Nodes are physically close to each other.
→ Nodes connected with high-speed LAN.
→ Communication cost is assumed to be small.

Distributed DBMSs:
→ Nodes can be far from each other.
→ Nodes connected using public network.
→ Communication cost and problems cannot be ignored.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction
processing and query execution in distributed
environments.
→ Optimization & Planning
→ Concurrency Control
→ Logging & Recovery

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OLTP VS. OL AP

On-line Transaction Processing (OLTP):
→ Short-lived read/write txns.
→ Small footprint.
→ Repetitive operations.

On-line Analytical Processing (OLAP):
→ Long-running, read-only queries.
→ Complex joins.
→ Exploratory queries.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TODAY'S AGENDA

System Architectures

Design Issues

Partitioning Schemes

Distributed Concurrency Control

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SYSTEM ARCHITECTURE

A DBMS's system architecture specifies what
shared resources are directly accessible to CPUs.

This affects how CPUs coordinate with each other
and where they retrieve/store objects in the
database.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SYSTEM ARCHITECTURE

10

Shared
Nothing

Network

Shared
Memory

Network

Shared
Disk

Network

Shared
Everything

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SHARED MEMORY

CPUs have access to common
memory address space via a fast
interconnect.
→ Each processor has a global view of all the

in-memory data structures.
→ Each DBMS instance on a processor has to

"know" about the other instances.

11

Network

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SHARED DISK

All CPUs can access a single logical
disk directly via an interconnect but
each have their own private
memories.
→ Can scale execution layer independently

from the storage layer.
→ Have to send messages between CPUs to

learn about their current state.

12

Network

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

SHARED DISK EXAMPLE

13

Node

Application
Server Node

Get Id=101
Page ABC

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

SHARED DISK EXAMPLE

13

Node

Application
Server Node

Get Id=200
Page XYZ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

SHARED DISK EXAMPLE

13

Node

Application
Server Node

Node
Get Id=101 Page ABC

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

SHARED DISK EXAMPLE

13

Node

Application
Server Node

Node

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

SHARED DISK EXAMPLE

13

Node

Application
Server Node

Node

Update 101
Page ABC

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

SHARED DISK EXAMPLE

13

Node

Application
Server Node

Node

Update 101
Page ABC

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SHARED NOTHING

Each DBMS instance has its own
CPU, memory, and disk.

Nodes only communicate with each
other via network.
→ Easy to increase capacity.
→ Hard to ensure consistency.

14

Network

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SHARED NOTHING EXAMPLE

15

Node

Application
Server Node

P1→ID:1-150

P2→ID:151-300

Get Id=200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SHARED NOTHING EXAMPLE

15

Node

Application
Server Node

P1→ID:1-150

P2→ID:151-300

Get Id=10
Get Id=200

Get Id=200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SHARED NOTHING EXAMPLE

15

Node

Application
Server Node

P1→ID:1-150

P2→ID:151-300

Node

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SHARED NOTHING EXAMPLE

15

Node

Application
Server Node

Node

P3→ID:101-200

P1→ID:1-100

P2→ID:201-300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

EARLY DISTRIBUTED DATABASE SYSTEMS

MUFFIN – UC Berkeley (1979)

SDD-1 – CCA (1979)

System R* – IBM Research (1984)

Gamma – Univ. of Wisconsin (1986)

NonStop SQL – Tandem (1987)

16

Bernstein

Mohan DeWitt

Gray

Stonebraker

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DESIGN ISSUES

How does the application find data?

How to execute queries on distributed data?
→ Push query to data.
→ Pull data to query.

How does the DBMS ensure correctness?

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

HOMOGENOUS VS. HETEROGENOUS

Approach #1: Homogenous Nodes
→ Every node in the cluster can perform the same set of

tasks (albeit on potentially different partitions of data).
→ Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes
→ Nodes are assigned specific tasks.
→ Can allow a single physical node to host multiple "virtual"

node types for dedicated tasks.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

MONGODB CLUSTER ARCHITECTURE

19

Router
(mongos)

Shards (mongod)

P3 P4

P1 P2

Config Server
(mongod)

Router
(mongos)

⋮

⋮

Application
Server

Get Id=101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

MONGODB CLUSTER ARCHITECTURE

19

Router
(mongos)

Shards (mongod)

P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Config Server
(mongod)

Router
(mongos)

⋮

⋮

Application
Server

Get Id=101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

MONGODB CLUSTER ARCHITECTURE

19

Router
(mongos)

Shards (mongod)

P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Config Server
(mongod)

Router
(mongos)

⋮

⋮

Application
Server

Get Id=101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DATA TRANSPARENCY

Users should not be required to know where data
is physically located, how tables are partitioned
or replicated.

A SQL query that works on a single-node DBMS
should work the same on a distributed DBMS.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DATABASE PARTITIONING

Split database across multiple resources:
→ Disks, nodes, processors.
→ Sometimes called "sharding"

The DBMS executes query fragments on each
partition and then combines the results to produce
a single answer.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

NAÏVE TABLE PARTITIONING

Each node stores one and only table.

Assumes that each node has enough storage space
for a table.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

NAÏVE TABLE PARTITIONING

23

Table1

SELECT * FROM table
Ideal Query:

Table2 Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

NAÏVE TABLE PARTITIONING

23

Table1

SELECT * FROM table
Ideal Query:

Table2 Partitions

Table1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

NAÏVE TABLE PARTITIONING

23

Table1

SELECT * FROM table
Ideal Query:

Table2 Partitions

Table1

Table2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets.
→ Choose column(s) that divides the database equally in

terms of size, load, or usage.
→ Each tuple contains all of its columns.
→ Hash Partitioning, Range Partitioning

The DBMS can partition a database physical
(shared nothing) or logically (shared disk).

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

HORIZONTAL PARTITIONING

25

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2017-11-29

102 b XXY 2017-11-28

103 c XYZ 2017-11-29

104 d XYX 2017-11-27

105 e XYY 2017-11-29

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

HORIZONTAL PARTITIONING

25

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2017-11-29

102 b XXY 2017-11-28

103 c XYZ 2017-11-29

104 d XYX 2017-11-27

105 e XYY 2017-11-29

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

HORIZONTAL PARTITIONING

25

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2017-11-29

102 b XXY 2017-11-28

103 c XYZ 2017-11-29

104 d XYX 2017-11-27

105 e XYY 2017-11-29

P3 P4

P1 P2

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

LOGICAL PARTITIONING

26

Node

Application
Server Node

Get Id=1

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Storage

LOGICAL PARTITIONING

26

Node

Application
Server Node

Get Id=3

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node

Node

PHYSICAL PARTITIONING

27

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node

Node

PHYSICAL PARTITIONING

27

Application
Server

Id=1

Id=2

Id=3

Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node

Node

PHYSICAL PARTITIONING

27

Application
Server

Get Id=1
Id=1

Id=2

Id=3

Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node

Node

PHYSICAL PARTITIONING

27

Application
Server

Get Id=3

Id=1

Id=2

Id=3

Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is
contained on one partition.
→ The DBMS does not need coordinate the behavior

concurrent txns running on other nodes.

A distributed txn accesses data at one or more
partitions.
→ Requires expensive coordination.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TRANSACTION COORDINATION

If our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
→ Centralized: Global "traffic cop".
→ Decentralized: Nodes organize themselves.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TP MONITORS

Example of a centralized coordinator.

Originally developed in the 1970-80s to provide
txns between terminals and mainframe databases.
→ Examples: ATMs, Airline Reservations.

Many DBMSs now support the same functionality
internally.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Coordinator

CENTRALIZED COORDINATOR

32

Partitions

Application
Server P3 P4

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Coordinator

CENTRALIZED COORDINATOR

32

PartitionsLock Request

Application
Server P3 P4

P1 P2

P1

P2

P3

P4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Coordinator

CENTRALIZED COORDINATOR

32

PartitionsLock Request

Acknowledgement

Application
Server P3 P4

P1 P2

P1

P2

P3

P4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Coordinator

CENTRALIZED COORDINATOR

32

PartitionsCommit Request

Application
Server P3 P4

P1 P2

P1

P2

P3

P4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Coordinator

CENTRALIZED COORDINATOR

32

PartitionsCommit Request

Safe to commit?
Application

Server P3 P4

P1 P2

P1

P2

P3

P4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Coordinator

CENTRALIZED COORDINATOR

32

Partitions

Acknowledgement

Commit Request

Safe to commit?
Application

Server P3 P4

P1 P2

P1

P2

P3

P4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CENTRALIZED COORDINATOR

33

M
id

d
le

w
a

re

Query Requests

Application
Server P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CENTRALIZED COORDINATOR

33

M
id

d
le

w
a

re

Query Requests

Application
Server P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CENTRALIZED COORDINATOR

33

M
id

d
le

w
a

re

Safe to commit?

Application
Server P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Commit Request

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

34

Application
Server

Begin Request

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

34

Application
Server

Query Request

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

34

Application
Server

Safe to commit?

Commit Request

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute
simultaneously across multiple nodes.
→ Many of the same protocols from single-node DBMSs

can be adapted.

This is harder because of:
→ Replication.
→ Network Communication Overhead.
→ Node Failures.
→ Clock Skew.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DISTRIBUTED 2PL

36

Node 1 Node 2

NETWORK

Set A=2

A=1

Set B=7

B=8

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DISTRIBUTED 2PL

36

Node 1 Node 2

NETWORK

Set A=2

A=1A=2

Set B=7

B=8B=7

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DISTRIBUTED 2PL

36

Node 1 Node 2

NETWORK

Set A=2

A=1A=2

Set B=7

B=8B=7

Application
Server

Application
ServerSet B=9 Set A=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DISTRIBUTED 2PL

36

Node 1 Node 2

NETWORK

Set A=2

A=1A=2

Set B=7

B=8B=7

Application
Server

Application
ServerSet B=9 Set A=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

DISTRIBUTED 2PL

36

Node 1 Node 2

NETWORK

Set A=2

A=1A=2

Set B=7

B=8B=7

Application
Server

Application
ServerSet B=9 Set A=0

Waits-For Graph

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

We have not discussed how to ensure that all
nodes agree to commit a txn and then to make
sure it does commit if we decide that it should.
→ What happens if a node fails?
→ What happens if our messages show up late?

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ATOMIC COMMIT PROTOCOL

When a multi-node txn finishes, the DBMS needs
to ask all of the nodes involved whether it is safe to
commit.
→ All nodes must agree on the outcome

Examples:
→ Two-Phase Commit
→ Three-Phase Commit (not used)
→ Paxos
→ Raft
→ ZAB (Apache Zookeeper)

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

39

Commit Request

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

39

Commit Request

Phase1: Prepare

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

39

Commit Request

OK

OK

Phase1: Prepare

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

39

Commit Request

OK

OK

Phase1: Prepare

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Phase2: Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

39

Commit Request

OK

OK

OK

Phase1: Prepare

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Phase2: Commit

OK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

39

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Success!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

40

Commit Request

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

40

Commit Request

Phase1: Prepare

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

40

Commit Request

ABORT!

Phase1: Prepare

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

40

ABORT! P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

40

ABORT! P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Phase2: Abort

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

40

ABORT!

OK

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Phase2: Abort

OK

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

2PC OPTIMIZATIONS

Early Prepare Voting
→ If you send a query to a remote node that you know will

be the last one you execute there, then that node will also
return their vote for the prepare phase with the query
result.

Early Acknowledgement After Prepare
→ If all nodes vote to commit a txn, the coordinator can

send the client an acknowledgement that their txn was
successful before the commit phase finishes.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

42

Commit Request

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

42

Commit Request

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

42

Commit Request

OK

OK P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

42

OK

OK P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

42

OK

OK P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

Phase2: Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

42

OK

OK

OK

P
a

rticip
a

n
t

P
a

rticip
a

n
t

C
o

o
rd

in
a

to
r

Application
Server

Node 3

Node 2

OK

Success!

Phase1: Prepare

Phase2: Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TWO-PHASE COMMIT

Each node has to record the outcome of each phase
in a stable storage log.

What happens if coordinator crashes?
→ Participants have to decide what to do.

What happens if participant crashes?
→ Coordinator assumes that it responded with an abort if it

hasn't sent an acknowledgement yet.

The nodes have to block until they can figure out
the correct action to take.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

Consensus protocol where a coordinator proposes
an outcome (e.g., commit or abort) and then the
participants vote on whether that outcome should
succeed.

Does not block if a majority of participants are
available and has provably minimal message delays
in the best case.
→ First correct protocol that was provably resilient in the

face asynchronous networks

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

2PC VS. PAXOS

Two-Phase Commit
→ Blocks if coordinator fails after the prepare message is

sent, until coordinator recovers.

Paxos
→ Non-blocking as long as a majority participants are alive,

provided there is a sufficiently long period without
further failures.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCLUSION

I have barely scratched the surface on distributed
txn processing…

It is really hard to get right.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://aphyr.com/tags/jepsen

CMU 15-445/645 (Fall 2018)

NEXT CL ASS

Replication

CAP Theorem

Real-World Examples

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

