
Database Systems

15-445/15-645

Fall 2018

Andy Pavlo
Computer Science
Carnegie Mellon Univ.AP

Lecture #23

Distributed OLTP
Databases (Part II)

https://db.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2018)

L AST CL ASS

System Architectures
→ Shared-Memory, Shared-Disk, Shared-Nothing

Partitioning/Sharding
→ Hash, Range, Round Robin

Transaction Coordination
→ Centralized vs. Decentralized

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

3

Application
Server

Begin Request

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

3

Application
Server

Query

Partitions

Query

Query

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

3

Application
Server

Safe to commit?

Commit Request

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

We have not discussed how to ensure that all
nodes agree to commit a txn and then to make
sure it does commit if we decide that it should.
→ What happens if a node fails?
→ What happens if our messages show up late?
→ What happens if we don't wait for every node to agree?

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TODAY'S AGENDA

Atomic Commit Protocols

Replication

Consistency Issues (CAP)

Federated Databases

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ATOMIC COMMIT PROTOCOL

When a multi-node txn finishes, the DBMS needs
to ask all of the nodes involved whether it is safe to
commit.

Examples:
→ Two-Phase Commit
→ Three-Phase Commit (not used)
→ Paxos
→ Raft
→ ZAB (Apache Zookeeper)
→ Viewstamped Replication

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

7

Commit Request

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

7

Commit Request

Phase1: Prepare

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

7

Commit Request

OK

OK

Phase1: Prepare

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

7

Commit Request

OK

OK

Phase1: Prepare

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Phase2: Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

7

Commit Request

OK

OK

OK

Phase1: Prepare

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Phase2: Commit

OK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (SUCCESS)

7

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Success!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

8

Commit Request

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

8

Commit Request

Phase1: Prepare

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

8

ABORT! P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

8

ABORT! P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Phase2: Abort

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

TWO-PHASE COMMIT (ABORT)

8

ABORT!

OK

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Phase2: Abort

OK

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

2PC OPTIMIZATIONS

Early Prepare Voting
→ If you send a query to a remote node that you know will

be the last one you execute there, then that node will also
return their vote for the prepare phase with the query
result.

Early Acknowledgement After Prepare
→ If all nodes vote to commit a txn, the coordinator can

send the client an acknowledgement that their txn was
successful before the commit phase finishes.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

10

Commit Request

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

10

Commit Request

OK

OK P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

10

OK

OK P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

10

OK

OK P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

Phase2: Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

EARLY ACKNOWLEDGEMENT

10

OK

OK

OK

P
a
rticip

a
n

t
P

a
rticip

a
n

t

C
o

o
rd

in
a
to

r

Application
Server

Node 3

Node 2

OK

Success!

Phase1: Prepare

Phase2: Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

TWO-PHASE COMMIT

Each node has to record the outcome of each phase
in a stable storage log.

What happens if coordinator crashes?
→ Participants have to decide what to do.

What happens if participant crashes?
→ Coordinator assumes that it responded with an abort if it

hasn't sent an acknowledgement yet.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

Consensus protocol where a
coordinator proposes an outcome
(e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

12

Lamport

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

Consensus protocol where a
coordinator proposes an outcome
(e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf

CMU 15-445/645 (Fall 2018)

Node 1

PAXOS

13

Commit Request

A
c
ce

p
to

r
A

c
ce

p
to

r

P
ro

p
o

se
r

Application
Server

Node 4

Node 2

A
c
ce

p
to

r

Node 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

PAXOS

13

Commit Request

A
c
ce

p
to

r
A

c
ce

p
to

r

P
ro

p
o

se
r

Application
Server

Node 4

Node 2

A
c
ce

p
to

r

Node 3

Propose

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

PAXOS

13

Commit Request

A
c
ce

p
to

r
A

c
ce

p
to

r

P
ro

p
o

se
r

Application
Server

Node 4

Node 2

A
c
ce

p
to

r

Node 3
XPropose

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

PAXOS

13

Commit Request
Agree

Agree

A
c
ce

p
to

r
A

c
ce

p
to

r

P
ro

p
o

se
r

Application
Server

Node 4

Node 2

A
c
ce

p
to

r

Node 3
XPropose

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

PAXOS

13

Commit Request
Agree

Agree

A
c
ce

p
to

r
A

c
ce

p
to

r

P
ro

p
o

se
r

Application
Server

Node 4

Node 2

A
c
ce

p
to

r

Node 3
XPropose

Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

PAXOS

13

Commit Request
Agree

Agree

Accept

A
c
ce

p
to

r
A

c
ce

p
to

r

P
ro

p
o

se
r

Application
Server

Node 4

Node 2

Accept

A
c
ce

p
to

r

Node 3
XPropose

Commit

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

Node 1

PAXOS

13

A
c
ce

p
to

r
A

c
ce

p
to

r

P
ro

p
o

se
r

Application
Server

Node 4

Node 2

Success!

A
c
ce

p
to

r

Node 3
X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
T

IM
E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

Agree(n)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

Agree(n)

Propose(n+1)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

Agree(n+1)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

Commit(n+1)

Agree(n+1)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PAXOS

14

Proposer ProposerAcceptors
Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

Commit(n+1)

Agree(n+1)

Accept(n+1)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

MULTI-PAXOS

If the system elects a single leader that is in charge
of proposing changes for some period of time,
then it can skip the PREPARE phase.
→ Fall back to full Paxos whenever there is a failure.

The system has to periodically renew who the
leader is.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

2PC VS. PAXOS

Two-Phase Commit
→ Blocks if coordinator fails after the prepare message is

sent, until coordinator recovers.

Paxos
→ Non-blocking as long as a majority participants are alive,

provided there is a sufficiently long period without
further failures.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

REPLICATION

The DBMS can replicate data across redundant
nodes to increase availability.

Design Decisions:
→ Replica Configuration
→ Propagation Scheme
→ Propagation Timing

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

REPLICA CONFIGURATIONS

Approach #1: Master-Replica
→ All updates go to a designated master for each object.
→ The master then propagates those updates to its replicas.
→ Read-only txns may be allowed to access replicas.
→ If the master goes down, then hold an election to select a

new master.

Approach #2: Multi-Master
→ Txns can update data objects at any replica.
→ Replicas synchronize with each other.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

REPLICA CONFIGURATIONS

19

Master-Replica

Master

P1

P1

P1

Replicas

Multi-Master

Node 1

P1

Node 2

P1

Writes
Reads Writes

Reads

Writes
Reads

Reads

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

K-SAFET Y

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must exist at all times.

If the number of replicas goes below this
threshold, then the DBMS halts execution and
takes itself offline.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS has to decide whether it has to wait for that
txn's changes to propagate to other nodes before it
can send the acknowledgement to application.

Propagation levels:
→ Synchronous
→ Asynchronous
→ Semi-Synchronous

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #1: Synchronous
→ The master sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

22

Commit?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #1: Synchronous
→ The master sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

22

Commit? Flush?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #1: Synchronous
→ The master sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

22

Commit? Flush? Flush!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #1: Synchronous
→ The master sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

22

Commit? Flush?

AckAck

Flush!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #1: Synchronous
→ The master sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous
→ The master immediately returns the

acknowledgement to the client without
waiting for replicas to apply the changes.

22

Commit? Flush?

AckAck

Flush!

Commit?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #1: Synchronous
→ The master sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous
→ The master immediately returns the

acknowledgement to the client without
waiting for replicas to apply the changes.

22

Commit? Flush?

AckAck

Flush!

Commit? Flush?

Ack

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #3: Semi-Synchronous
→ Replicas immediately send

acknowledgements without logging them.

23

Commit?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #3: Semi-Synchronous
→ Replicas immediately send

acknowledgements without logging them.

23

Commit? Flush?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #3: Semi-Synchronous
→ Replicas immediately send

acknowledgements without logging them.

23

Commit? Flush?

AckAck

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION SCHEME

Approach #3: Semi-Synchronous
→ Replicas immediately send

acknowledgements without logging them.

23

Commit? Flush?

AckAck

Flush!

Applications can make trade-offs on protecting
the integrity of the database versus performance.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

PROPAGATION TIMING

Approach #1: Continuous
→ The DBMS sends log messages immediately as it

generates them.
→ Also need to send a commit/abort message.

Approach #2: On Commit
→ The DBMS only sends the log messages for a txn to the

replicas once the txn is commits.
→ Do not waste time sending log records for aborted txns.
→ Assumes that a txn's log fits entirely in memory.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

ACTIVE VS. PASSIVE

Approach #1: Active-Active
→ A txn executes at each replica independently.
→ Need to check at the end whether the txn ends up with

the same result at each replica.

Approach #2: Active-Passive
→ Each txn executes at a single location and propagates the

changes to the replica.
→ Not the same as master-replica vs. multi-master

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP THEOREM

Proposed by Eric Brewer that it is impossible for a
distributed system to always be:
→ Consistent
→ Always Available
→ Network Partition Tolerant

Proved in 2002.

26

Brewer

Pick Two!
Sort of…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP THEOREM

27

AC

P

Consistency
Availability
Partition Tolerant

Linearizability
All up nodes can satisfy

all requests.

Still operate correctly
despite message loss.

Impossible

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP CONSISTENCY

28

Master Replica

NETWORK

Set A=2

A=1

B=8

A=1

B=8

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP CONSISTENCY

28

Master Replica

NETWORK

Set A=2

A=1

B=8

A=2 A=1

B=8

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP CONSISTENCY

28

Master Replica

NETWORK

Set A=2

A=1

B=8

A=2 A=1

B=8

A=2

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP CONSISTENCY

28

Master Replica

NETWORK

Set A=2

A=1

B=8

A=2 A=1

B=8

A=2

Application
Server

Application
ServerACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP CONSISTENCY

28

Master Replica

NETWORK

Set A=2

A=1

B=8

A=2

Read A

A=1

B=8

A=2

Application
Server

Application
ServerACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP CONSISTENCY

28

Master Replica

NETWORK

Set A=2

A=1

B=8

A=2

Read A

A=2

A=1

B=8

A=2

Application
Server

Application
ServerACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP CONSISTENCY

28

Master Replica

NETWORK

Set A=2

A=1

B=8

A=2

Read A

A=2

A=1

B=8

A=2

If master says the txn committed,
then it should be immediately

visible on replicas.

Application
Server

Application
ServerACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP AVAIL ABILIT Y

29

Master Replica

NETWORK

A=1

B=8

A=1

B=8

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP AVAIL ABILIT Y

29

Master Replica

NETWORK

A=1

B=8

A=1

B=8

Application
Server

Application
Server

X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP AVAIL ABILIT Y

29

Master Replica

NETWORK

A=1

B=8

A=1

B=8

Application
Server

Application
Server

X

Read B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP AVAIL ABILIT Y

29

Master Replica

NETWORK

A=1

B=8

A=1

B=8

Application
Server

Application
Server

X

Read B

B=8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP AVAIL ABILIT Y

29

Master Replica

NETWORK

A=1

B=8

A=1

B=8

Application
Server

Application
Server

X

Read A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP AVAIL ABILIT Y

29

Master Replica

NETWORK

A=1

B=8

A=1

B=8

Application
Server

Application
Server

X

Read A

A=1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP PARTITION TOLERANCE

30

Master Replica

NETWORK

A=1

B=8

A=1

B=8

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP PARTITION TOLERANCE

30

Master

A=1

B=8

A=1

B=8

Application
Server

Application
Server

Master

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP PARTITION TOLERANCE

30

Master

Set A=2

A=1

B=8

Set A=3

A=1

B=8

Application
Server

Application
Server

Master

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP PARTITION TOLERANCE

30

Master

Set A=2

A=1

B=8

A=2

Set A=3

A=1

B=8

A=3

Application
Server

Application
Server

Master

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP PARTITION TOLERANCE

30

Master

Set A=2

A=1

B=8

A=2

Set A=3

ACK

A=1

B=8

A=3

Application
Server

Application
ServerACK

Master

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP PARTITION TOLERANCE

30

Master

Set A=2

A=1

B=8

A=2

Set A=3

ACK

A=1

B=8

A=3

Application
Server

Application
ServerACK

Master

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CAP FOR OLTP DBMSs

How a DBMS handles failures determines which
elements of the CAP theorem they support.

Traditional/NewSQL DBMSs
→ Stop allowing updates until a majority of nodes are

reconnected.

NoSQL DBMSs
→ Provide mechanisms to resolve conflicts after nodes are

reconnected.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different
DBMSs in their applications.

It would be nice if we could have a single interface
for all our data.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FEDERATED DATABASES

Distributed architecture that connects together
multiple DBMSs into a single logical system.

A query can access data at any location.

This is hard and nobody does it well
→ Different data models, query languages, limitations.
→ No easy way to optimize queries
→ Lots of data copying (bad).

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FEDERATED DATABASE EXAMPLE

34

M
id

d
le

w
a
re

Query Requests

Application
Server

Back-end DBMSs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FEDERATED DATABASE EXAMPLE

34

M
id

d
le

w
a
re

Query Requests

Application
Server

Back-end DBMSs

Connectors

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

FEDERATED DATABASE EXAMPLE

34

Query Requests

Application
Server

Back-end DBMSs

Foreign
Data

Wrappers

Connectors

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

CONCLUSION

We assumed that the nodes in our distributed
DBMS are friendly.

Blockchain databases assume that the nodes are
adversarial. This means you have to use different
protocols to commit transactions.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CMU 15-445/645 (Fall 2018)

NEXT CL ASS

Distributed OLAP Systems

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

