
H-Store And VoltDB

Yiqun (Ethan) Zhang

December 3, 2018

Carnegie Mellon University

2

yzhang@voltdb.com

https://www.linkedin.com/in/yzhang1991

fast transactions

3

4

AGENDA • History

5

AGENDA • Architectural Overview

6

AGENDA • How VoltDB diverged from H-Store

7

AGENDA • New research followed H-Store

8

9

long-running
read-only

complex joins

exploratory queries
OLAP

10

compression

What if state fits in memory?

• A lot of data sets do fit in memory

• 100 MB per warehouse in TPC-C

• Even data for 1,000 such warehouses can still fit!

11

12

Where did we spend our time?

13

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

100%

Where did we spend our time?

13

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

100%

Where did we spend our time?

13

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

in-memory data storage

70.4%

Where did we spend our time?

13

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

in-memory data storage

70.4%

Where did we spend our time?

14

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

in-memory data storage

70.4%

OLTP transactions are short-lived

• The heaviest TPC-C transaction:

• reads/writes ~200 records;

• can be finished in less than 1 millisecond;

• CPU is not the bottleneck.

15

Where did we spend our time?

16

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

in-memory data storage

run single-threaded

33.4%

Single-threaded problems

17

• Waiting on users leaves CPU idle.

• Single-threaded does not jive with

the multicore world.

Transactions are repetitive

• Queries are known in advance;

• Control flows are settled in advance too.

• External transaction control can be converted into pre-
compiled stored procedures with structured control code
intermixed with parameterized SQL commands on the server.

18

Waiting on users external transaction control

• Don’t

• External transaction control and performance are not friends;

• Use server-side transactional logic;

• Move the logic to data, not the other way around;

19

Using ALL the cores

• Partitioning data is a requirement for scale-out.

• Single-threaded is desired for efficiency.
Why not partition to the core instead of the node?

• Concurrency via scheduling, not shared memory.

20

Where did we spend our time?

21

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

in-memory data storage

run single-threaded

33.4%

Where did we spend our time?

21

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

in-memory data storage

run single-threaded

33.4%

durability through replication

Where did we spend our time?

21

CPU Cycle Breakdown for Shore on
TPC-C New Order
Source: Harizopoulos, Abadi, Madden and
Stonebraker, “OLTP Under the Looking Glass”,
SIGMOD 2008

in-memory data storage

run single-threaded

durability through replication

undo logging

19.6%

What did we end up building?

• In-memory relational SQL database.

• No external transaction control – Stored Procedures

• Single-threaded engines run in parallel.

• Partitioned to the core.

• Concurrency via Scheduling, not shared memory.

• Serializable ACID.

• Durability through Replication

22

Architecture

23

24

25

In-memory store
Single-threaded engine

Run in parallel

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

26

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Replicated table

26

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

READ

Read from a replicated table

27

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

READ

Read from a replicated table

27

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

WRITE

Write to a replicated table

28

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

WRITE

Write to a replicated table

28

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

WRITE

Write to a replicated table

28

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Partitioned Table

29

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Single Partition Read

Command Router

READ

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where PLAYER_ID = 687

30

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Single Partition Read

Command Router

READ

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where PLAYER_ID = 687

687, Black, Mark, 55

30

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Single Partition Read

Command Router

READ

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where PLAYER_ID = 687

687, Black, Mark, 55

30

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

update PLAYER set CREDITS = 50 where PLAYER_ID = 123

Single Partition Write

31

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

123, Brown, Joe, 50

update PLAYER set CREDITS = 50 where PLAYER_ID = 123

Single Partition Write

31

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

123, Brown, Joe, 50

update PLAYER set CREDITS = 50 where PLAYER_ID = 123

Single Partition Write

31

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where CREDITS > 75

Multi Partition Read

32

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where CREDITS > 75456, Silvers, Phil, 77

345, White, Betty, 94

Multi Partition Read

32

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where CREDITS > 75456, Silvers, Phil, 77

345, White, Betty, 94

Multi Partition Read

32

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

update PLAYER set CREDITS = 0 where CREDITS < 60;

Multi Partition Write

33

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

update PLAYER set CREDITS = 0 where CREDITS < 60;

Multi Partition Write

33

123, Brown, Joe, 0

234, Green, Peter, 0

687, Black, Mark, 0

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

WRITE

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

update PLAYER set CREDITS = 0 where CREDITS < 60;

Multi Partition Write

33

123, Brown, Joe, 0

234, Green, Peter, 0

687, Black, Mark, 0

Multi Partition Writes

• Need two-phase commit.

• Simple solution – block until the transaction finishes.

• Introduces network stall - BAD.

34

Single Partition case

35

Coordinator

Partition 1 execute

Client

execute execute execute

Multi Partition case

36

Coordinator

Partition 1

Partition 2 execute

Client

execute

execute

execute

execute

execute

......

network stall network stall

Multi Partition case

36

Coordinator

Partition 1

Partition 2 execute

Client

execute

execute

execute

execute

execute

......

network stall network stall

Early Acknowledgement

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

READ

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where PLAYER_ID = 687

Durability not guaranteed

37

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

READ

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where PLAYER_ID = 687

Durability not guaranteed

37

Node #1

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

READ

123, Brown, Joe, 100

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

345, White, Betty, 94

687, Black, Mark, 55

525, Snow, Ann, 73

select * from PLAYER where PLAYER_ID = 687

Durability not guaranteed

37

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

READ

Read from a replicated table

38

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

READ

Read from a replicated table

38

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

READ

Read from a replicated table

38

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

READ

Read from a replicated table

38

Replication!

39

Node #1

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68
PLAYER_ID

LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

Durability through replication

39

Node #1

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

Node #2

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

Durability through replication

39

Node #1

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

Node #2

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

select * from PLAYER where PLAYER_ID = 234

Durability through replicationPartition leader

Partition leader

READ

39

Node #1

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

Node #2

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

select * from PLAYER where PLAYER_ID = 234

Durability through replicationPartition leader

Partition leader

READ

39

Node #1

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

Node #2

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

select * from PLAYER where PLAYER_ID = 234

Durability through replicationPartition leader

Partition leader

READ

!!!

39

Node #1

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

Node #2

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

select * from PLAYER where PLAYER_ID = 234

Durability through replicationPartition leader

Partition leader

READ

234, Green, Peter, 41

39

Node #1

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

Node #2

123, Brown, Joe, 50

456, Silvers, Phil, 77

234, Green, Peter, 41

567, Brown, Mary, 68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Command Router

select * from PLAYER where PLAYER_ID = 234

Durability through replicationPartition leader

Partition leader

READ

234, Green, Peter, 41

40 https://15445.courses.cs.cmu.edu/fall2018/slides/23-distributedoltp2.pdf

Active-Active Replication

41

Coordinator

Partition 1 execute

Client

execute

Replica execute execute

network stall

Recall that for the Multi Partition case...

42

Coordinator

Partition 1

Partition 2 execute

Client

execute

execute

execute

execute

execute

......

network stall network stall

SP + Replication as bad as MP?

43

SP + Replication (K-safety) blocks K + 1 partitions

still has parallelism

MP blocks ALL partitions

NO parallelism

Determinism in Active-Active Replication

• Running the same transaction against several replicas.

• How do you ensure they end up with the same result?

44

Query Order

45

CREATE TABLE t (val INT); CREATE TABLE t (val INT);

val val

Query Order

45

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

val val

1 1

Query Order

45

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
UPDATE t SET val = val * 10;

val val

1

2

10

Query Order

45

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
UPDATE t SET val = val * 10;

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
UPDATE t SET val = val * 10;
INSERT INTO t VALUES (2);

val val

10

2

10

20

Tuple Order

46

CREATE TABLE t (val INT); CREATE TABLE t (val INT);

val val

Tuple Order

46

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

val val

1

1

Tuple Order

46

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);

val val

1

1

2

2

Tuple Order

46

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
DELETE FROM t LIMIT 1;

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
DELETE FROM t LIMIT 1;

val val

12

DELETE FROM t LIMIT 1 ORDER BY val;

Function Determinism

47

INSERT INTO t VALUES (TODAY());

2018/12/03 23:59:59

2018/12/03

Function Determinism

47

INSERT INTO t VALUES (TODAY());

2018/12/03

2018/12/04 00:00:00

Function Determinism

47

INSERT INTO t VALUES (TODAY());

2018/12/03

2018/12/04 00:00:00

2018/12/04

INSERT INTO t VALUES (‘2018/12/03’);

48

in-memory data storage

run single-threaded

durability through replication

undo logging

19.6%

What did we have to change? - except logos

49

#1 Disk-based durability

• No one had any interest whatsoever in in-memory-only OLTP.

50

51

Durability - Command Logging

• Deterministic, Serializable operations written to the command log on disk.

• Replay operations on the same starting state in the fixed order reproduces
the same ending state.

• Serializable Isolation: a performance trick, rather than a performance
compromise.

52

Why log the command?

•Bounded Size - throughput

•Latency

53

Write-Ahead Logging

54

Coordinator

Partition 1 execute

Client

Disk log

Before Values (UNDO)
After Values (REDO)

Command Logging (Sync)

55

Coordinator

Partition 1 execute

Client

Disk log

Only the operation is logged

Command Logging (Async)

56

Coordinator

Partition 1

Client

Disk

execute

log

Command Logging (Async)

57

Coordinator

Partition 1

Client

Disk

execute

log

execute

log

execute

log

execute

log

Back Pressure mechanism to make sure the command
log does not fall too far behind.

Checkpoint Snapshot

60

Command Log Truncated by Snapshot

Command log

Snapshot

Tunable Frequency

Transactions

User Data

MVCC – “two version” concurrency control

#2 Cross Datacenter Replication

• Durability

• Geographically Dispersed Datacenters

• Active-Passive and Active-Active

61

62

Server

A

p3p1 p2

Server

B

p6p4 p5

Server

C

p9p7 p8

Server

X

p3p1 p2

Server

Y

p6p4 p5

Server

Z

p9p7 p8

VoltDB Database East Coast

VoltDB Database West Coast

• Active-Active Geo Datacenter
Replication

• Asynchronous Replication
• Conflict Detection
• Different Cluster Topologies

#3 Memory Fragmentation

• Long running clusters used more memory

• Memory usage doesn’t shrink after data deletion

63

Bucketing and Compaction

64

20% full 40% full 60% full 80% full

Tuple Storage

Index Swap the node for deletion with something at the end of the
allocated storage, fixing links up when needed.

#4 Shared Replicated Table

• Space efficiency

• Engine Complexity

65

Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Replicated table

66

A cluster configuration from a customer:
• 48 CPU cores (sites)
• 512 GB RAM
• 10Gbps ethernet
• 6 nodes
• k-safety = 1

A 100 MB replicated table takes
100 x 48 x 6 = 28,800 MB

Node #1

SRT saved significant memory space

67

Node #1 Node #2

A 100 MB replicated table takes
100 x 48 x 6 = 28,800 MB

SRT saved significant memory space

67

Node #1 Node #2

A 100 MB replicated table takes
100 x 6 = 600 MB

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

WRITE

Write to a shared replicated table

68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

WRITE

Write to a shared replicated table

68

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

WRITE

Write to a shared replicated table

68

Latches in the execution engine

69

One! Two! Four!

DEADLOCK
• Current transaction cannot finish
• Next transaction cannot begin

latch.countDown();
if (isLowestSite()) {

latch.await();
doWrite();

}

Engine Memory Context Switch

70

Lowest Site

Partitioned Table P join Replicated Table R:

R P1

P2

#5 Materialized Views

• One of things that enables the streaming power in VoltDB.

71

72

SELECT c1, COUNT(*), SUM(c2+c3) FROM T WHERE ...

NETWORKING

Without Materialized Views:

TXN OVERHEAD
ADD TUPLE

IN MEM
x 500K/s

NETWORKING TXN OVERHEAD QUERY DASHBOARD x 1K/s

NETWORKING

With Materialized Views:

TXN OVERHEAD
ADD TUPLE

IN MEM
x 500K/s

NETWORKING TXN OVERHEAD x 1K/s

UPDATE

VIEW

QUERY

VIEW

#6 Importer/Exporters

• When you process transactions at extremely high velocity,
the problem starts to look like stream processing a little
bit.

73

Summary: AT HIGH VELOCITY

• Nobody wants black-box state. Real-time understanding has value.

• OLTP apps smell like stream processing apps.

• Processing and state management go well together.

• Adding features to a fast/stateful core is easier than reinventing
wheels.

74

#7 More SQL

• User-Defined Functions

• Common Table Expressions

• Better planning via Calcite (In Progress)

• and more...

75

Things that were changed

• Disk-based Durability

• Cross Datacenter Replication

• Memory Fragmentation

• Shared Replicated Tables

• Materialized Views

• importers and Exporters

• More SQL

76

New Research Directions

• Stream Processing capabilities - S-Store

• Larger-than-memory data management

• Improve Multi Partition Transaction Performance

77

H-Store -> S-Store:
Stream Processing

• New constructs for streams:

• Window: finite chunks of state over
(possibly unbounded) streams.

• Trigger: computations to be invoked
for newly generated data.

• Workflow: computation pipelines of
dependent transactions.

• Tuple TTL (Time-To-Live) – VoltDB 8.2

78
Cetintemel, Ugur, et al. "S-Store: a streaming NewSQL system for big velocity applications.”
Proceedings of the VLDB Endowment 7.13 (2014): 1633-1636.

Larger than memory
data management

• More often than not, OLTP workloads have
hot and cold portions of the database.

• General approach:
• Identify cold tuples (online/offline)

• Evict cold tuples to disk (when? track?)

• Tuple retrieval (how? granularity?)

• Tuple merge (when?)

• A lot of implementations:
• H-Store, MemSQL,

Hekaton (SQL Server In-Memory), etc.

79
DeBrabant, Justin, et al. "Anti-caching: A new approach to database management system architecture.”
Proceedings of the VLDB Endowment 6.14 (2013): 1942-1953.

Smarter Scheduling

• Use data-heavy node as coordinator

• reduces data movement

• N-Partition instead of All-Partition

• Disable undo logging when possible (SP only)

• Speculative concurrency control
• Execute other transactions speculatively while

waiting for commit/abort.

• Use Markov model for transaction behavior
forecast.

80
Pavlo, Andrew, et al. "On predictive modeling for optimizing transaction execution in parallel OLTP systems.”
Proceedings of the VLDB Endowment5.2 (2011): 85-96.

Smarter Partitioning

• Partition database to reduce the number of
distributed transactions.

• Large-Neighborhood Search with sample
workload trace.

• Skew-aware Cost Model

• Replicated secondary index

81
Pavlo, A., Curino, C., & Zdonik, S. Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (pp. 61-72). ACM.

Elastic Partitioning: E-Store

• Two-tiered partitioning:

• Individual hot tuples

• Large blocks of colder tuples

• Tuple-level monitoring

• Tuple placement planning

• Online reconfiguration

82
Taft, Rebecca, et al. "E-store: Fine-grained elastic partitioning for distributed transaction processing systems.”
Proceedings of the VLDB Endowment 8.3 (2014): 245-256.

Thank you

83

