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fast transactions
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AGENDA • History
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AGENDA • Architectural Overview
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AGENDA • How VoltDB diverged from H-Store
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AGENDA • New research followed H-Store
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long-running
read-only

complex joins

exploratory queries
OLAP
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compression



What if state fits in memory?

• A lot of data sets do fit in memory

• 100 MB per warehouse in TPC-C

• Even data for 1,000 such warehouses can still fit!
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Where did we spend our time?
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OLTP transactions are short-lived

• The heaviest TPC-C transaction:

• reads/writes ~200 records;

• can be finished in less than 1 millisecond;

• CPU is not the bottleneck.
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Single-threaded problems
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• Waiting on users leaves CPU idle.

• Single-threaded does not jive with

the multicore world.



Transactions are repetitive

• Queries are known in advance;

• Control flows are settled in advance too.

• External transaction control can be converted into pre-
compiled stored procedures with structured control code
intermixed with parameterized SQL commands on the server.
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Waiting on users external transaction control

• Don’t

• External transaction control and performance are not friends;

• Use server-side transactional logic;

• Move the logic to data, not the other way around;
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Using ALL the cores

• Partitioning data is a requirement for scale-out.

• Single-threaded is desired for efficiency.
Why not partition to the core instead of the node?

• Concurrency via scheduling, not shared memory.
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Where did we spend our time?
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in-memory data storage

run single-threaded

durability through replication

undo logging
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What did we end up building?

• In-memory relational SQL database.

• No external transaction control – Stored Procedures

• Single-threaded engines run in parallel.

• Partitioned to the core.

• Concurrency via Scheduling, not shared memory.

• Serializable ACID.

• Durability through Replication
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Architecture
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In-memory store
Single-threaded engine

Run in parallel
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Replicated table
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Node #1

Node #2
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Multi Partition Writes

• Need two-phase commit.

• Simple solution – block until the transaction finishes.

• Introduces network stall - BAD.
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Single Partition case
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Coordinator

Partition 1 execute

Client

execute execute execute



Multi Partition case
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Multi Partition case
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Early Acknowledgement
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Active-Active Replication
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Coordinator

Partition 1 execute

Client

execute

Replica execute execute

network stall



Recall that for the Multi Partition case...
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Coordinator

Partition 1

Partition 2 execute

Client

execute

execute

execute

execute

execute ......

......

network stall network stall



SP + Replication as bad as MP?
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SP + Replication (K-safety) blocks K + 1 partitions

still has parallelism

MP blocks ALL partitions

NO parallelism



Determinism in Active-Active Replication

• Running the same transaction against several replicas.

• How do you ensure they end up with the same result?
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Query Order

45

CREATE TABLE t (val INT); CREATE TABLE t (val INT);

val val



Query Order
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CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
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1 1



Query Order
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CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);

CREATE TABLE t (val INT);
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val val
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Query Order

45

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
UPDATE t SET val = val * 10;

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
UPDATE t SET val = val * 10;
INSERT INTO t VALUES (2);

val val

10

2

10
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Tuple Order
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Tuple Order
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Tuple Order
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Tuple Order
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CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
DELETE FROM t LIMIT 1;

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
DELETE FROM t LIMIT 1;

val val

12

DELETE FROM t LIMIT 1 ORDER BY val;



Function Determinism
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INSERT INTO t VALUES ( TODAY() );

2018/12/03 23:59:59

2018/12/03



Function Determinism
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INSERT INTO t VALUES ( TODAY() );

2018/12/03

2018/12/04 00:00:00



Function Determinism
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INSERT INTO t VALUES ( TODAY() );

2018/12/03

2018/12/04 00:00:00

2018/12/04

INSERT INTO t VALUES ( ‘2018/12/03’ );



48

in-memory data storage

run single-threaded

durability through replication

undo logging

19.6%



What did we have to change? - except logos
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#1 Disk-based durability

• No one had any interest whatsoever in in-memory-only OLTP.

50



51



Durability - Command Logging

• Deterministic, Serializable operations written to the command log on disk.

• Replay operations on the same starting state in the fixed order reproduces
the same ending state.

• Serializable Isolation: a performance trick, rather than a performance
compromise.
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Why log the command?

•Bounded Size - throughput

•Latency
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Write-Ahead Logging
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Coordinator

Partition 1 execute

Client

Disk log

Before Values (UNDO)
After Values (REDO)



Command Logging (Sync)
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Coordinator

Partition 1 execute

Client

Disk log

Only the operation is logged



Command Logging (Async)
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Coordinator

Partition 1

Client

Disk

execute

log



Command Logging (Async)
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Coordinator

Partition 1

Client

Disk

execute

log

execute

log

execute

log

execute

log

Back Pressure mechanism to make sure the command 
log does not fall too far behind.



Checkpoint Snapshot
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Command Log Truncated by Snapshot

Command log

Snapshot

Tunable Frequency

Transactions

User Data

MVCC – “two version” concurrency control



#2 Cross Datacenter Replication

• Durability

• Geographically Dispersed Datacenters

• Active-Passive and Active-Active
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Server

A

p3p1 p2

Server

B

p6p4 p5

Server

C

p9p7 p8

Server

X

p3p1 p2

Server

Y

p6p4 p5

Server

Z

p9p7 p8

VoltDB Database East Coast 

VoltDB Database West Coast 

• Active-Active Geo Datacenter
Replication

• Asynchronous Replication
• Conflict Detection
• Different Cluster Topologies



#3 Memory Fragmentation

• Long running clusters used more memory

• Memory usage doesn’t shrink after data deletion
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Bucketing and Compaction
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20% full 40% full 60% full 80% full

Tuple Storage

Index Swap the node for deletion with something at the end of the
allocated storage, fixing links up when needed.



#4 Shared Replicated Table

• Space efficiency

• Engine Complexity
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Node #2

PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Replicated table

66

A cluster configuration from a customer:
• 48 CPU cores (sites)
• 512 GB RAM
• 10Gbps ethernet
• 6 nodes 
• k-safety = 1

A 100 MB replicated table takes
100 x 48 x 6 = 28,800 MB

Node #1



SRT saved significant memory space
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Node #1 Node #2

A 100 MB replicated table takes
100 x 48 x 6 = 28,800 MB



SRT saved significant memory space
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Node #1 Node #2

A 100 MB replicated table takes
100 x 6 = 600 MB



PLAYER_ID
LAST_NAME
FIRST_NAME

CREDITS

PLAYER

Node #1

Node #2

Command Router

WRITE

Write to a shared replicated table
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Node #2

Command Router

WRITE

Write to a shared replicated table

68



Latches in the execution engine

69

One! Two! Four!

DEADLOCK
• Current transaction cannot finish
• Next transaction cannot begin

latch.countDown();
if (isLowestSite()) {

latch.await();
doWrite();

}



Engine Memory Context Switch

70

Lowest Site

Partitioned Table P join Replicated Table R:

R P1

P2



#5 Materialized Views

• One of things that enables the streaming power in VoltDB.
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SELECT c1, COUNT(*), SUM(c2+c3) FROM T WHERE ...

NETWORKING

Without Materialized Views:

TXN OVERHEAD
ADD TUPLE

IN MEM
x 500K/s

NETWORKING TXN OVERHEAD QUERY DASHBOARD x 1K/s

NETWORKING

With Materialized Views:

TXN OVERHEAD
ADD TUPLE

IN MEM
x 500K/s

NETWORKING TXN OVERHEAD x 1K/s

UPDATE

VIEW

QUERY

VIEW



#6 Importer/Exporters

• When you process transactions at extremely high velocity,
the problem starts to look like stream processing a little
bit.

73



Summary: AT HIGH VELOCITY

• Nobody wants black-box state. Real-time understanding has value.

• OLTP apps smell like stream processing apps.

• Processing and state management go well together.

• Adding features to a fast/stateful core is easier than reinventing
wheels.
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#7 More SQL

• User-Defined Functions

• Common Table Expressions

• Better planning via Calcite (In Progress)

• and more...

75



Things that were changed

• Disk-based Durability

• Cross Datacenter Replication

• Memory Fragmentation

• Shared Replicated Tables

• Materialized Views

• importers and Exporters

• More SQL

76



New Research Directions

• Stream Processing capabilities - S-Store

• Larger-than-memory data management

• Improve Multi Partition Transaction Performance

77



H-Store -> S-Store:
Stream Processing

• New constructs for streams:

• Window: finite chunks of state over 
(possibly unbounded) streams.

• Trigger: computations to be invoked 
for newly generated data.

• Workflow: computation pipelines of 
dependent transactions.

• Tuple TTL (Time-To-Live) – VoltDB 8.2

78
Cetintemel, Ugur, et al. "S-Store: a streaming NewSQL system for big velocity applications.”
Proceedings of the VLDB Endowment 7.13 (2014): 1633-1636.



Larger than memory
data management

• More often than not, OLTP workloads have
hot and cold portions of the database.

• General approach:
• Identify cold tuples (online/offline)

• Evict cold tuples to disk (when? track?)

• Tuple retrieval (how? granularity?)

• Tuple merge (when?)

• A lot of implementations:
• H-Store, MemSQL,

Hekaton (SQL Server In-Memory), etc.

79
DeBrabant, Justin, et al. "Anti-caching: A new approach to database management system architecture.”
Proceedings of the VLDB Endowment 6.14 (2013): 1942-1953.



Smarter Scheduling

• Use data-heavy node as coordinator

• reduces data movement

• N-Partition instead of All-Partition

• Disable undo logging when possible (SP only)

• Speculative concurrency control
• Execute other transactions speculatively while

waiting for commit/abort.

• Use Markov model for transaction behavior
forecast.

80
Pavlo, Andrew, et al. "On predictive modeling for optimizing transaction execution in parallel OLTP systems.”
Proceedings of the VLDB Endowment5.2 (2011): 85-96.



Smarter Partitioning

• Partition database to reduce the number of 
distributed transactions.

• Large-Neighborhood Search with sample 
workload trace.

• Skew-aware Cost Model

• Replicated secondary index

81
Pavlo, A., Curino, C., & Zdonik, S. Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (pp. 61-72). ACM.



Elastic Partitioning: E-Store

• Two-tiered partitioning:

• Individual hot tuples

• Large blocks of colder tuples

• Tuple-level monitoring

• Tuple placement planning

• Online reconfiguration

82
Taft, Rebecca, et al. "E-store: Fine-grained elastic partitioning for distributed transaction processing systems.”
Proceedings of the VLDB Endowment 8.3 (2014): 245-256.



Thank you
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