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* How VoltDB diverged from H-Store
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What if state fits in memory?

* A lot of data sets do fit in memory
* 100 MB per warehouse in TPC-C

* Even data for 1,000 such warehouses can still fit!
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OLTP transactions are short-lived

* The heaviest TPC-C transaction:

* reads/writes ~200 records;
e can be finished in less than 1 millisecond;

e CPU is not the bottleneck.
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Single-threaded problems

* Waiting on users leaves CPU idle.

* Single-threaded does not jive with
the multicore world.
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Transactions are repetitive

* Queries are known in advance;
* Control flows are settled in advance too.

e External transaction control can be converted into pre-
compiled stored procedures with structured control code
intermixed with parameterized SQL commands on the server.
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Waltlng ON USEerS external transaction control

* Don’t
 External transaction control and performance are not friends;
» Use server-side transactional logic;

* Move the logic to data, not the other way around;

VOLTDB
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Using ALL the cores

* Partitioning data is a requirement for scale-out.

* Single-threaded is desired for efficiency.
Why not partition to the core instead of the node?

* Concurrency via scheduling, not shared memory.
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What did we end up building?

* In-memory relational SQL database.

* No external transaction control — Stored Procedures
* Single-threaded engines run in parallel.

* Partitioned to the core.

* Concurrency via Scheduling, not shared memory.

* Serializable ACID.

* Durability through Replication

VOLTDB
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Run in parallel

In-memory store
Single-threaded engine VOUTDB
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Multi Partition Read
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Multi Partition Writes

* Need two-phase commit.
e Simple solution — block until the transaction finishes.

* Introduces network stall - BAD.

VOLTDB




Single Partition case
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Multi Partition case

network stall network stall
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Read from a replicated table
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Partition leader
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ACTIVE VS. PASSIVE

Approach #1: Active-Active
— A txn executes at each replica independently.

— Need to check at the end whether the txn ends up with
the same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Not the same as master-replica vs. multi-master




Active-Active Replication

NN /[ /.

Coordinator

Partition 1 | execute | [ execute / .
Replica m m >

network stall
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Recall that for the Multi Partition case...

network stall network stall

VOLTDB
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SP + Replication as bad as MP?

SP + Replication (K-safety) blocks K + 1 partitions
still has parallelism

MP blocks ALL partitions
NO parallelism
VYOULTDB



Determinism in Active-Active Replication

* Running the same transaction against several replicas.

* How do you ensure they end up with the same result?

a1 VOLTDB
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Query Order

=

CREATE TABLE t (val INT);

=

CREATE TABLE t (val INT);
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Query Order

=

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

=

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
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Query Order

=

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);

=

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

UPDATE t SET val =

10

val * 10;
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Query Order

=

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
UPDATE t SET val = val * 10;

10
20

=

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
UPDATE t SET val = val * 160;
INSERT INTO t VALUES (2);

10
2
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Tuple Order

\
N——
N——

N

CREATE TABLE t (val INT);

N—
N——
N——"

N —

CREATE TABLE t (val INT);
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Tuple Order

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);

VOLTDB




Tuple Order

CREATE TABLE t (val INT); CREATE TABLE t (val INT);
INSERT INTO t VALUES (1); INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2); INSERT INTO t VALUES (2);
1 2
2 1

4 VOLTDB
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Tuple Order

N——
N——

N—

N——
N ¥, DELETE FROM t LIMIT 1 ORDER BY val; N——

N

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
DELETE FROM t LIMIT 1,

CREATE TABLE t (val INT);
INSERT INTO t VALUES (1);
INSERT INTO t VALUES (2);
DELETE FROM t LIMIT 1,

VOLTDB




Function Determinism

INSERT INTO t VALUES ( TODAY() );

2018/12/03

2018/12/03 23:59:59

47 VOLTDB



Function Determinism

INSERT INTO t VALUES ( TODAY() );

2018/12/03

2018/12/04 00:00:00

47 VOLTDB



Function Determinism

INSERT INTO t VALUES ( €2018/12/03° );
INSERT INTO t VALUES ( TODAY() );

2018/12/03

47 VOLTDB
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undo logging
durability through replication

run single-threaded

in-memory data storage

19.6%
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#1 Disk-based durability

* No one had any interest whatsoever in in-memory-only OLTP.

VOLTDB




8

~=

N ——

- 4=




Durability - Command Logging

* Deterministic, Serializable operations written to the command log on disk.

* Replay operations on the same starting state in the fixed order reproduces
the same ending state.

* Serializable Isolation: a performance trick, rather than a performance
compromise.

52 VOLTDB



Why log the command?

* Bounded Size - throughput
e Latency

VOLTDB



Client

Coordinator

Partition 1

Disk
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Write-Ahead Logging

Before Values (UNDO)
After Values (REDO)
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Client

Coordinator

Partition 1

Disk

Command Logging (Sync)

<

log_ |
Only the operation is logged
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Command Logging (Async)

AN /

Coordinator

Partition 1

Disk
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Command Logging (Async)

AN /[ /.

Coordinator

Partition 1 mmmm g
Disk m m m m

Back Pressure mechanism to make sure the command
log does not fall too far behind.

57 VOLTDB
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Checkpoint Snapshot

User Data

||| Transactions | || |[[[ ]|/}

Command log |

<>
‘ ‘ Tunable Frequency 1
Command Log Truncated by Snapshot

Snapshot

MVCC - “two version” concurrency control t

VOLTDB




#2 Cross Datacenter Replication

* Durability
* Geographically Dispersed Datacenters

e Active-Passive and Active-Active

VOLTDB
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VoltDB Database East Coast

Server Server Server
A B C

~

/

-~

o

Server Server Server
Y

VoltDB Database West Coast

~

/

Active-Active Geo Datacenter
Replication

Asynchronous Replication
Conflict Detection

Different Cluster Topologies

VOLTDB
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#3 Memory Fragmentation

* Long running clusters used more memory

* Memory usage doesn’t shrink after data deletion

VOLTDB




Bucketing and Compaction

-0 8 € B

20% full 40% full 60% full 80% full

Index Swap the node for deletion with something at the end of the
allocated storage, fixing links up when needed.

64 VOLTDB



#4 Shared Replicated Table

* Space efficiency

* Engine Complexity

VOLTDB



Replicated table

#ﬁ' A cluster configuration from a customer:
% L 111 e 48 CPU cores (sites)
PLAYER_ID

* 512 GB RAM
LAST_NAME
Node #2 * 10Gbps ethernet % FIRST_NAME
CREDITS
* 6 nodes

#ﬁ' e k-safety=1
S ¥un

A 100 MB replicated table takes

100 x 48 x 6 = 28,800 MB
66 VOLTDB




SRT saved significant memory space

Node #1 Node #2

S M S Mm
S S

A 100 MB replicated table takes
100 x 48 x 6 = 28,800 MB
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SRT saved significant memory space

Node #1 Node #2

S M S Mm

o o

A 100 MB replicated table takes
100 x 6 = 600 MB
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Write to a shared replicated table

m

PLAYER_ID

( LAST _NAME

WRITE FIRST_NAME

Command Router

CREDITS

po

2
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Write to a shared replicated table

CREDITS

VOLTDB



Node #1

Write to a shared replicated table

YU

PLAYER_ID

\ ((( % LAST_NAME
Node #2 S WRITE RST N
Y~
~

Bhidday O

nmmu iyl

Command Router
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Latches in the execution engine

latch.countDown();
if (isLowestSite()) {
latch.await();

doWrite();
}

One!

69

DEADLOCK

* Current transaction cannot finish
* Next transaction cannot begin

Yy

:

Two! Four!

)
$an

i
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Engine Memory Context Switch

Partitioned Table P join Replicated Table R:

f\

*® P

i

Lowest Site

i

R

~((®

*
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#5 Materialized Views

* One of things that enables the streaming power in VoltDB.

VOLTDB




SELECT c1, COUNT(*), SUM(c2+c3) FROM T WHERE ...

Without Materialized Views:

NETWORKING TXN OVERHEAD

NETWORKING TXN OVERHEAD

With Materialized Views:

NETWORKING TXN OVERHEAD

NETWORKING TXN OVERHEAD
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ADD TUPLE
IN MEM

X 500K/s

s QUERY DASHBOARD =l  x 1K/s

ADD TUPLE
IN MEM

QUERY
VIEW

UPDATE
VIEW

X 1K/s

X 500K/s
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#6 Importer/Exporters

* When you process transactions at extremely high velocity,

the problem starts to look like stream processing a little
bit.
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Summary: AT HIGH VELOCITY

* Nobody wants black-box state. Real-time understanding has value.
* OLTP apps smell like stream processing apps.
* Processing and state management go well together.

» Adding features to a fast/stateful core is easier than reinventing
wheaels.

VOLTDB
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#7 More SOL

* User-Defined Functions
* Common Table Expressions
* Better planning via Calcite (In Progress)

e and more...

VOLTDB




Things that were changed

* Disk-based Durability

* Cross Datacenter Replication
* Memory Fragmentation

* Shared Replicated Tables

* Materialized Views

e importers and Exporters

* More SQL
" VYOLUTDB



New Research Directions

e Stream Processing capabilities - S-Store
* Larger-than-memory data management

* Improve Multi Partition Transaction Performance
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H-Store -> S-Store:
Stream Processing

* New constructs for streams:

S-Store: A Streaming NewSQL System
for Big Velocity Applications

Ligur Catintamal’, .Ilsm Du?, Tim Krasia', Samuel Maddan’, David Maler,
John Maghan', Andraw Paio’_ Mchasd Stonebrakar, Erik &n.harland
Masime 'I'alml K.nsﬁn Tufte’, Haa ‘Wang', Stanley Zdoni

'Brown University  ‘Imiel Labs  'MIT  ‘Ponlend State Unkarsity  "CMU
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* Workflow: computation pipelines of
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Cetintemel, Ugur, et al. "S-Store: a streaming NewSQL system for big velocity applications.”
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Anti-Caching: A New Approach to
Database Management System Architecture

Justin DeBrabant Andrew Pavlo Stephen Tu
Brown University Brown University MIT GSAIL
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ABSTRACT
The tradisionsl wisdam for blding disk-bused relationsl databse

managsen|
blocks siored on disk, with & main mesnory block cache. In order io

e perfarmance given bigh disk latzncy, these systems wie 3
vehithrsoded architectur wilh dynamic recond-loval locking tat

Previous rescarch bas shown that this resulis in substantial aver.
b Fo con-ie trmsastion processing (OLTP) spyications [15].

The neat peneration DEMSs seck to overoome thess limiltations
with architeerare bhased an mais memary resident daia. To aver-
came tbe pestriction Shat all data 6l in man memOry, we prapose
i new lochmiaque, <allod anii-caching, where cobd data is moved
o disk in 0 transoctionally-saie manner as the daibase grows in
size. Because daea iniially resides in memsory, s ani.caching ar-
chitectins roverses the sditional storage hicrarchy of disk- hased
systenus. Main memary is now the primary storage device.

We implemeated & profoiype of our anii-cacking propasal in &
high-perfurmasce. main memary OLTP DEMS asd performed 3
e of experineers s o ango of Uakuse s, worklond
skrus
open e, sk, bsed DEMS oty fronid b e
main memary cache, Our results show that for higher skewad
warkloads the sei<aching srchilesture has b performance advis.-
tage over cither of the oiher sschilcctses iesied of up to x fora
i sive B¢ Farger thim merssory

L. INTRODUCTION
Histesiclly. the internal architecture of DEMS has been prod-
icated on the orage aad managemess of dota in beavily-encoded
disk blocks. Tn mast syssenss, there is a header at the beginning of
wch disk block 1 il curmain operations in the sysem, For
examsple, this Beader usually contains a *line table” at the front of
the bluck t suppoct indisestion b tsples. This aliws the [BMS 1o
reveyasize bincks withaul needing 1o changs indes painters. When
o disk block is read inio mais memory, it must then be rmnslaed
is40 main memmery format.
Bersiasice i sake digitsl or bed copes of ll o paet af 1hs weelt T
prsumel e clussoom wie it geanted witkont fee provaled thas copics e
ik mbd o AU ol i sl afasage s il et
m ct sl the ull Gtation an he et ke T cugy etherwise, 1=

,.‘......m_m,. e Rete ot i st _..uu,.“ﬂ
theirsesuits i The VerpL

Auapust 26k - Sha 201, Savedl Gt T, sy
Fracaedings of the VLD Enorerent. Vol 6, N 1

Copyeight 2013 VLB Endoweseat 21 506097 i 5 100

Slan Zdonlk
Brown University
shz@cs.brown.edu

in:a bl poct of|
oy for Easter pecess. When an executing query afiempls 1o reasd 2
ik block. the DEMS first checks io see whether the biock already
it in this balfer possl 1 oo, a Block is evieled (o make room
for the needed one. There is substantial cverhead to minaging the
buffer poot, sisce block and the
system must maintain an evictice: ander palicy (... east recenily
e, As aoted im [15], when all data fits in masn memory, the
cost of maintaining a beffer pool is nearly oue.-thind of all the CPU
cycles uscd hy the DEMS

A e1pns o mdoapng kst s b fotoed s sy
of new DEMSS thal pul the etire
thus have: s Butfer pood {1 1], TinsesTen was an early propanemt by
this appronch (311, wd more recen! examples include H-Store |2,
1], MemSQL (31 and RAMCloud 251, H-Store and its com-
mercaal versice Volt B (4]) perfoms sigmificantly betier than disk.
based DIRMSs on :.mmi aLre bend:mu\f-i 28] because o his

well s from gwwiding the averhead of

Conisereney costrl and ey wcighi daa ogging (22

“The fimcamental mmm with main mesoary DIBMSs, harwever.
nthal

s smaller than the mmorpnmn ‘memery availabe in the sys-
tems. If the daishase does not fit in memary, then the operaiisg
sysom will siart 10 page vistual memory, and main memory -
cesses will cuse page flls. Because pape fulls are Irssparent
s the user, in chis case the main memery DEMS, he exceutson of
maniscticas s stalled while the page s Betched from disk. Thas s 2
 DBMS, like H-Stoms,
tians serially without the use af beavyweight locking and laschisg
Becusse of this, all main mensory DEMSs wam users not to ex.
coed the amount of real memory 15]. 1 memory is excended (o1
i it might be o some poisd in the Fature), then 2 wser v wither
(1) provisivn new hanfware and migrate their daisbase o & larger
cluster ar (1) fall back to o tenditions disk-based system, with its
oot pecfomance protiems
e

nnnbmmcxh: fach i Meamenchcd |14 n o af 4 k-
based DIBMS, Under thas (wortier srchitectares, e applisation first
Joaks in the cache for the tuple of isterest. I this tuple is not n the
cache, then the application exscuies & query in the DEMS w fetch
the devired data. Cmce the application receives this data from the
DHBMS, it upsdanes the cache for fast acsess in the future. Whenever
a tupie is modified in the daiabase, the application must imvalidme
s sache wntry 50 that the et Gme i is psessed the spplication

i DEMS

1042

arger than memory
data management

* More often than not, OLTP workloads have
hot and cold portions of the database.

* General approach:

* |dentify cold tuples (online/offline)
* Evict cold tuples to disk (when? track?)
* Tuple retrieval (how? granularity?)

Tuple merge (when?)

* Alot of implementations:

* H-Store, MemSQL,
Hekaton (SQL Server In-Memory), etc.

DeBrabant, Justin, et al. "Anti-caching: A new approach to database management system architecture.”
79 Proceedings of the VLDB Endowment 6.14 (2013): 1942-1953.
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ABSTRACT

A new emerging class of parallel dalabuse management systems
(DBMS) is designed to take advantage of the partitianable work-
Ioads of on-line transaction processing (OLTP) applications [23,
20]. Tramsactions in these syslems are optimized 1o execale 1o com-
pletion an a single node in a shared-nothing cluster wilbout need.
ing to coordinale wilh olher nodes of use expensive concurrency
cantrol measures [15]. But some OLTP applications <anaot be par-
tisioned such that all of their ransactions execute within 3 single-
partition in this mamner. These distribuled transactions access data
not stored within their local partitions and subsequenlly require
‘mare heavy-weight concurrency control protocols. Further difficul.
ties arise when the transaction’s execution properties, such as the
number of pastitians it may need in access or whethec it will abort,
ane not known befocehand. The DBMS could mitigate these per:
farmance isswes if it is provided with additicnal information about
transactions. Thas, in this paper we present a Markov model-based
approach for automatically selecting which cptimizations a DEMS
cauld use, mamely (1) mere eficient concurrency control schemes,
(2) inteligent scheduling. (3) reduced undo logging. and (4) spec-

3 technigues, we car
models and integrated them into 3 parallel, main-memory OLTP
DBMS to show (hal we can impruve the perfanmance of apglica:
ticins with diverse workloads

1. INTRODUCTION

‘Shared-nothing parallel datsbuses are touted for their ability lo
execule OLTP workloads with Righ throughpus. In such systems,
data is spread across shared-nothing servers into disjcint segments
called partitions. OLTP workloads have thres salient characieris-
tics that make thern amenable Lo this environment: (1) ransactions
ane shart-ived (ie., no user stalls), (2) sransactivns touch 3 small
subset of data using index lock-ups fi.¢.. 10 full table scans or large
distributed joins}, and (3} iransactions are repetitive (i, execuling
the same quecies with different imputs) (23],

‘Even with careful pantisioning [7). achieving good performance
with this archilecture requires significant tuning because af dis-
tributed transactions that access multiple partitions. Such trans:

Permissios t0 make digital or hard copies of all or part of this work for
personal ar chassroom use is graned withou Fee provided that copies are
o e o disiributed fox profis or commercial advamags and thin copies
ear this fofice and tha full citsison on the B page, To-cepy olberusse, o
republish, o prost m servers o1 (o rocistribule ko s, reuines priee specific

ission andlor 2 foe. Articks from his volume were inviled 10 present
their rewshs a1 The 36th Intersatiosal Confercsse n Viry Lanee Dsea Bases.
Augus! 27th - 3151 2012, Istanbl, Turkey.

‘mceedings of i, Val, 5, No. 2
Copyright 2011 VLB Endwrsent 2150509771110 5 10,00,
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actions require the DBMS to either (1) block olber transsctions
from using each pantition undil thal transaction fnishes ar (2) use
fine-grained locking with deadock detection to execule iransac-
tioas comcursently [18]. In either strateizy, the DBMS may also need
o maintain an undo bulfer in case the transaction aborts. Avoidiag
such onerous concurrency comirol is important, since it has been
shown to be approzimately 30% of the CPU overhead for OLTP
workloads in traditional databases [ 14]. To do s, howeves, requires.
the DBMS to have additional infommatian about iransactions be-
fore they start. For example, if the DEMS knows that a transaction.
wsly needs Lo access data sl cne parition, then that \ransaction can
be redirected 1o the machine with that data and execuled without
eavy-weight concurrency control schemes [23]

It is not practical, however, 1o require usess 1o explicitly inform.
the DEMS haw individual transactions are going to behave. This
is especially trve for comples. applications where a chaage in the
database's configuration, such a5 its partitioning scheme. affects
transactions’ execulion properties. Hence., in this paper we present
a novel method 1o sutomatically select which optimizations the DE-
MS can apply 1o transactions at runtime using Markov models. A
Markoy model is a probahilisiic model thal, given the cummenl state
of a transaction fe g . which query i just executed), captuses the
probability distribution of what actions that transaction will per-
foem in the future. Based on this prediction, the DEMS can then
enable the proper optimizatians. Our appraach has minimal over-
‘head, and thas i can be used an-line (0 observe reqoests 1o make im-
miediate predictians on transaction behavior without additicnal in-
foematian From the user. We assume that the benefit cutweighs the
st when the prediction is wrong. This paper is focused on stored
procedure-based iransactions, which have four properties that can
be explaited if they are known in advance: (1) how much data
is accessed an each node, (2) whal partitions will the trnsaction.
eadlwrite, (3) whether the transaction could abrt, and i4) when
thie transaction will be finished with 2 partition.

We begin wilh an overview of the opliizations used o imprave
the throughput of OLTE worklasds. We then describe our primary
contribusion: represening iransactions as Markoy models in 3 way
thit allows a DBMS to decide which of these oplimizations o co-
ploy hased on the most likely behavior of a transoction. Next, we
present Houdini, an on-line framework that uses these models 1o
generate predictions about transactions before they start, We have
imtegrated this frameswork into the H-Store system [2] and measure
its ability 1o optimize three OLTP benchmarks The results from
these experiments demonsizate that our models select the proper
wptimizations far 93% of irnsactions and improve the (hroughpul
of the system by 41% on average with an overhead of 5% of the
total ransaction execution time. Although our work is described in
the comlext af H-Stare, it is applicable o similar OLTP systerns.

Smarter Scheduling

Use data-heavy node as coordinator

* reduces data movement

N-Partition instead of All-Partition

Disable undo logging when possible (SP only

Speculative concurrency control
e Execute other transactions speculatively while
waiting for commit/abort.

* Use Markov model for transaction behavior
forecast.

Pavlo, Andrew, et al. "On predictive modeling for optimizing transaction execution in parallel OLTP systems.”
80 proceedings of the VLDB Endowment5.2 (2011): 85-96.
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ABSTRACT

The advent of afforcabie, shared-nothing computing systems por-
tends anew class of parallel database management systems (DEMS)
for on-line transaction processing (OLTP) applications that scale
without saceificing ACID guarastees [7, 5] The pecformance of
these DEMSS is predicated on the existence of an cptimal database
design that is siloced for the unigue charocleristics of OLTP work-
Soads [43], Deriving such desigas for mosdern DEMSs is difficult,
especially for enrerprise-class OLTP sysems, since they impose
extra challenges: the use of stored procedures, the need for load
halancing in the presence of time-varying skew, complex schemas,
amd deployments with larger nursber of partitions.

“To this purpose, we preseat 2 novel spproach to sutomatically
pantitioning databases for enterprise-class OLTP systems that sig-
mificantly extends the state of the ant by: (1) minimizing the aumber
distributed transactions, while concurrently mitigating the effects
af temporal skew in boih the data distribution and acoesses, (2} ex-
tending the design space to include replicates secondary indexes,
ey argamically handling stored procedure rousing, and (3) scaling
of schema complexisy, data size, and number of pastitions. This
effort builds oa two key technical contributions: an analytical cost
enodel that can be used to quickly estimate the relative coordination
cost and skew for o given worklosd and o candidale database de-
sign. and an informed exploration af the huge salution space based
on large neighbarhood search. To evaluate our methods, we inte-
grated our database design tool with  high-performance parallel,
enain meenory DBMS and compared our methods against both pop:
ular heuristics and a state-of-the-art research peototype [17]. Using
& diverse set of benchmarks, we show that our approach improves
throughput by p Lo a faclor of 165 aver these oiher appraaches

Categories and Subject Descriptors
.22 [Database Managemwent]: Physical Design

Keywords

OLTP, Parallel, Shared Nothing, H-Store, KB, Slared Pracedures

1. INTRODUCTION
“The difficulty of scaling front-end applications is well known for
DBMSs execuiing highly concurrent workloads. One appeoach 1o

Bermission 10 make digisal o hard copies of all or pan of this wark for
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Copyright 2012 ACM $78-14503-1247-8/1 205 .. $10.00,

this problem emplayed by many Web-based companies is o par-
tifion the data and woekioad acsoss a large numbes of commod-
ity. shared-nothing servers using a cosl-effective, parallel DEMS
Many of thess companies have adopted various new DEMSs, col-
Ioguially referred 1o os NoSQL systems, that give up transactional
ACID guarastees in favor of availability and scalability [9]. This
is desi 2 i of the data are
“sall” fe.g., stalus updales on a social networking site (hat da not
need ta be immediately propagated throughoul the application)

OLTF systems. especially enterprise OLTP systems that handle
‘high-profile data (e .. financial and onler processing systems). also
meed o be scalable but cannot give up strong transactional and con-
sistency requirements [27]. The only option previously available
flor these organtzations was to purchase more powerful single-node
machines or develop custom middleware that distribues que
ves iraditional DBMS nodes [81]. Both apprauches are protibi
expensive und thus are ol an apsion For many.

‘s an altemative 1o NoSQL and custom deployments, 3 new
class of paraliel DBMSs, called NewSQL (7). i emerging. These
systems are designed to take advantage of the pastitionability of
OLTP workloads 1o achieve scalability withoul sscrilicing ACID
guarantees [9. 43]. The OLTP warkloasds targeted by these NewSQL.
‘systems are characterized as having & large numbe of tansactions
thiat (1) are shoct-lived (ie., no user stalls), (2) touch 2 small sub-
set of data using index look-ups fie., 1o full lable scans of large
distributed joins), and {3) are repetitive {i.e., typically execuled as
pre-delined iransaction templates or siored pracedures [43, 421}

‘The scalability of OLTF applications on many of these newer
DBMSs depends on the existence of an optimal database design.
Such a design defines how an application’s dua and workload is
pastitiomed s replicated acrass modes in a cluster, and how queries
and transactions are souled 1o nodes. This in tum determines the
nursber of (ransactions thal access data. stared on cach node and
how skewed the load is aczass the cluster. Optimizing these two
factons is critical io scaling complex. systems: our experimental ev-
iddence shows that a growing Eraction of distributed iransactions and
Inad skew can degrade performance by over a factar 10 Hence,
wilbout & proper design. o DBMS will perform na belter than
single-node system due la the overhead cassed by blocking, inles-
node communication, and load balancing issues [25, 37],

Many of the existing techniques for astomatic database parti-
tioning. however, are tailored for large-scale analytical applications
{ie., data warchouses) [36, 4D]. These approaches are hased an
the notion of data declustering [28]. where the gosl is to spread
data across nodes to maximize mir-query parallelism [5, 10, 39,
4B]. Much of this work is not applicable 1o OLTP systems be-
cause the muli-node coandination required 1o schieve transaction
coasistency dominates the pecformance gains obtained by this type

ly

Smarter Partitioning

Partition database to reduce the number of

distributed transactions.

Large-Neighborhood Search with sample

workload trace.
Skew-aware Cost Model

Replicated secondary index

Pavlo, A., Curino, C., & Zdonik, S. Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (pp. 61-72). ACM.
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ABSTRACT

On-line transaction processing (OLTP) database management sys-
tems (DBMSs) often serve lime-varying wosklonds due o daily,
weekly or seasonal fluctations in demand. or becasse of rapid
growth in demand due 10 @ company's business success. In ad
dition, many OLTP werkloads are heavily skewed 1o "hot” tuples
or ranges of tples. For example, the majocity of NYSE volume
involves oaly 40 stocks. To deal with such Buctuations, an OLTP
DBMS needs to be elastic, that is, it must be able to expand and
contract resources in respanse 1o load fluctustions and dynamically
blance loid a3 bol tuples vary oves time.

This paper presenis E-Store, an elastic partitioning framework
for distribused OLTP DEMSs. I auscmatically scales resources in
respanse to demand spikes, peciodic eveats, and gradual changes ia
an application’s warklsad. E-Store addresses localized boulenecks
theough a two-tiee data placement strategy: cold data is distributed
in lurge chunks, while smaller ranges of hot tuples are assigned
eaplicily 1o individual nodes. This is in contrast Lo traditional
single-tier hach and range pantitioning strategies. Our experimen-
tal evaluation of E-Store shows the vibility of our approach and
ity ellicacy undes varfations in load acauss a cluster of machines.
Compared to single-tier approaches, E-Stare improves throughgut
by up to 130% while reducing latency by 50%.

1. INTRODUCTION

Masy OLTP applicatians ane sabject 10 ungrediclable variations
in demand. This variability is especially prevalent in web-based
services. which handle lrge numbers of reguests whose volume
may depend an factors such s the weathes or social media trends.
As such, it is impoetant that & back-end DBMS be resilient 1o load
spikes. For example, an e-commerce site may become overwhelmed
during a holiday sale. Moseorer, specilic items within the database
can suddenly become papulas, such s when a review of 1 beak oa
TV show generales a deluge of orders in onsline boakstores.
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‘Such application variability makes managing DBMS resources
difficult, especially in virtualized, mulii-tenant deployments [10],
Enterprises frequently provision “silved” workioads for some mul-
tiple of theis rautine laad, such as S=10 the average demand This
eaves resources underuilized for a substantial fraction of the time
There is a desire in many enterprises (o censalidate OLTP applica-
tioes ol a smaller callection of pewverful servers, whether using
a public cloud platform or an intermal clood. This mulsi-tenascy
promses o decrease over-peavisioning far OLTF appicatons ond
(e, system
administrators). But lmlﬂ: the dmm for these co-located appli-
calions is statistically independent, the net effect of multi-tenancy
may be more extreme Auctuations in boad.

T date, the way that adrinistrators have deall wilh changes in
demand an an OLTP DBMS has been mestly o masual proces
Toc often it is & struggle 1o increase capacity and Temove system
oulemecks faster than the DBMS load increases [11]. This is es-
pecially true for applications that require strong ransaction guar-
antees without service inlesruptions. Part of the challenge is thal
DLTP applications can incur several types of workload skew that
each require different solutions. Examples of these include:

Hot Spots: In many OLTP applications, the rate thal trimsac-
isoas aocess centain individual tuples oc small key ranges within o
table is ofien skewed. Far example, 40-60% of the volume o the
Mew York Stock Exchange {NYSE) occurs an just 40 out of ~4000
stocks [23]. This phenomenca alse appears in social networks,
sach as Twitter, where celebrities and socialites have millions of
Tollowers that require several dedicated servers just in process their
updtes. The magorsty of the alher users have anly a few followers,
and can be managed by a genesal pool of servers

Tisme-Varying Skew: Mulli-natianal customer suppoct applica-
tions tend 1o exhibil & “follow the sun” cyclical workload. Here,

bifls around the
when most pecple are swal. This means (sl the Toad in aay ge-
wgraphic area will resemble a sine wave over the course of a day.
Time-depenent warkloads may alse have cyclic skew with other
‘periodicities. For example, an on-line application 1o reserve camp-
i sites will have seasanal variations in load, with summer moaths
‘being much busier than winter menths.

Load Spikes: A DEMS may icur sharl perinds when the mum-
berof significanily
ume. Fios examgle. the volume on the NYSE during the first and lust
ten minutes of the trading day is an order of magnitude higher than
at other mes. Such surges may be prediciable, as in the NYSE
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e Two-tiered partitioning:
* Individual hot tuples
* Large blocks of colder tuples

* Tuple-level monitoring
* Tuple placement planning

* Online reconfiguration

'E-store: Fine-grained elastic partitioning for distributed transaction processing systems.”
Proceedings of the VLDB Endowment 8.3 (2014): 245-256.

VOLTDB




Thank you

VOLTDB



