Carnegie Mellon University
 Department of Computer Science
 15-445/645 - Database Systems (Fall 2019)
 Prof. Andy Pavlo

Homework 2 (by Amadou Ngom)
Due: Monday Sept 30, 2019 @ 11:59pm

IMPORTANT:

- Upload this PDF with your answers to Gradescope by 11:59pm on Monday Sept 30, 2019.
- Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
For your information:
- Graded out of $\mathbf{1 0 0}$ points; $\mathbf{4}$ questions total
- Rough time estimate: $\approx 1-4$ hours (0.5-1 hours for each question)

Revision : 2019/09/25 15:06

Question	Points	Score
Cuckoo Hashing	20	
B+Tree	45	
Extendible Hashing	25	
Suffix Trees	10	
Total:	100	

Number of Days this Assignment is Late:

Number of Late Day You Have Left:

Question 1: Cuckoo Hashing

[20 points]

Consider the following cuckoo hashing schema:

1. Both tables have a size of 4 .
2. The hashing function of the first table returns the lowest two bits: $h_{1}(\mathrm{x})=\mathrm{x} \& 0 \mathrm{~b} 11$.
3. The hashing function of the second table returns the next two bits: $h_{2}(x)=(x \gg 2) \& 0 b 11$
4. When replacement is necessary, first select an element in the second table.
5. The original content is shown in Figure 1.

Table 1

Table 2

Figure 1: Initial contents of the hash tables.
Use the following template to answer the questions: https://cmudb.io/fall2019-hw1.
(a) [4 points] Insert keys 12 and 10. Draw the resulting two tables.
(b) [4 points] Then delete 14 , and insert 8 . Draw the resulting two tables.
(c) [6 points] Finally, insert 28. Draw the resulting two tables.
(d) [6 points] What is the smallest key that potentially causes an infinite loop given the tables in (c)25679None of the above

Question 2: B+Tree

Consider the following B+tree.

Figure 2: B+ Tree of order $d=4$ and height $h=2$.

When answering the following questions, be sure to follow the procedures described in class and in your textbook. You can make the following assumptions:

- A left pointer in an internal node guides towards keys $<$ than its corresponding key, while a right pointer guides towards keys \geq.
- A leaf node underflows when the number of keys goes bellow $\left\lceil\frac{d-1}{2}\right\rceil$.
- An internal node underflows when the number of pointers goes below $\left\lceil\frac{d}{2}\right\rceil$.

Use the following draw.io template for your answers:
https://cmudb.io/fall2019-hw2
(a) [15 points] Insert 10^{*} into the $\mathrm{B}+$ tree. Draw the resulting tree.
(b) [5 points] How many pointers (parent-to-child and sibling-to-sibling) do you chase to find all keys between 5 and 15 ?345 67
(c) [15 points] Then delete 23^{*}. Draw the resulting tree.
(d) [10 points] Finally insert 4^{*} and delete 11^{*}. Draw the resulting tree.

Question 3: Extendible Hashing

Consider an extendible hashing structure such that:

- Each bucket can hold up to two records.
- The hashing function uses the lowest g bits, where g is the global depth.
(a) Starting from an empty table, insert keys $15,3,7,14$.
i. [3 points] What is the global depth of the resulting table?
0
1 234 None of the above
ii. [3 points] What is the local depth the bucket containing 14 ?
$\square 0$ 1 23None of the above
iii. [3 points] What is the local depth of the bucket containing 3?
0
123None of the above
(b) Starting from the result in (a), you insert keys $1,9,23,11,17$.
i. [4 points] Which key will first cause a split (without doubling the size of the table)?
1
9 23
11
17
None of the above
ii. [4 points] Which key will first make the table double in size?
1
92311

17
None of the above
(c) Now consider the table below, along with the following deletion rules:

1. If two buckets have the same local depth d, and share the first $d-1$ bits of their indexes (e.g. 010 and 110 share the first 2 bits), then they can be merged if the total capacity fits in a single bucket. The resulting local depth is $d-1$.
2. If the global depth g becomes strictly greater than all local depths, then the table can be halved in size. The resulting global depth is $g-1$.

Figure 3: Extendible Hash Table along with the indexes of each bucket

Starting from the table above, delete keys 2, 7, 13, 15, 29.
i. [4 points] Which deletion first causes a reduction in a local depth.$2 \square$ $7 \quad \square$ 13 15 29None of the above
ii. [4 points] Which deletion first causes a reduction in global depth. $\square 2 \quad \square 7 \quad \square 13 \quad \square 15 \quad \square 29 \quad \square$ None of the above

Question 4: Suffix Trees

Consider the following suffix tree for unsigned 32-bit integers.

Figure 4: Suffix Tree
(a) [3 points] Which of the following elements belong to the suffix tree. Select all that apply.0x45BD00000x0000CAAC0xFFAAAAO00xACCA00000xBD000000None of the above
(b) [7 points] Insert the key 0x00FFAABB. Draw the resulting tree using this template: https: //cmudb.io/fall2019-hw4.

