CARNEGIE MELLON UNIVERSITY COMPUTER SCIENCE DEPARTMENT 15-445/645 – DATABASE SYSTEMS (FALL 2019) PROF. ANDY PAVLO

Homework #2 (by Amadou Ngom) – Solutions Due: **Monday Sept 30, 2019** @ **11:59pm**

IMPORTANT:

- Upload this PDF with your answers to Gradescope by 11:59pm on Monday Sept 30, 2019.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- You have to use this PDF for all of your answers.

For your information:

- Graded out of 100 points; 4 questions total
- Rough time estimate: \approx 1-4 hours (0.5-1 hours for each question)

Revision: 2019/10/10 13:09

Question	Points	Score
Cuckoo Hashing	20	
B+Tree	45	
Extendible Hashing	25	
Suffix Trees	10	
Total:	100	

Number of Days this Assignment is Late:

Number of Late Day You Have Left:

Question 1: Cuckoo Hashing [20 points] Graded by:

Consider the following cuckoo hashing schema:

- 1. Both tables have a size of 4.
- 2. The hashing function of the first table returns the lowest two bits: $h_1(x) = x \& 0b11$.
- 3. The hashing function of the second table returns the next two bits: $h_2(x) = (x >> 2) \& 0b11$
- 4. When replacement is necessary, first select an element in the second table.
- 5. The original content is shown in Figure 1.

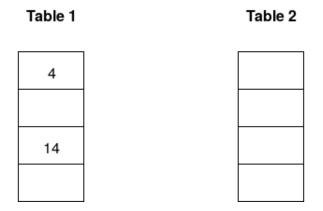



Figure 1: Initial contents of the hash tables.

Use the following template to answer the questions: https://cmudb.io/fall2019-hw1.

- (a) [4 points] Insert keys 12 and 10. Draw the resulting two tables.
- (b) [4 points] Then delete 14, and insert 8. Draw the resulting two tables.
- (c) **[6 points]** Finally, insert 28. Draw the resulting two tables.
- (d) [6 points] What is the smallest key that potentially causes an infinite loop given the tables in (c)

b)	
Table 1	Table 2
4	
10	8
	12
c)	
Table 1	Table 2
12	
12	
	4
10	8
	28

Question 2: B+Tree.....[45 points] Graded by:

Consider the following B+tree.

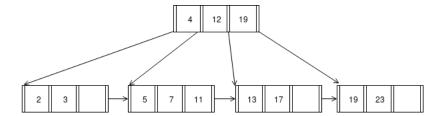
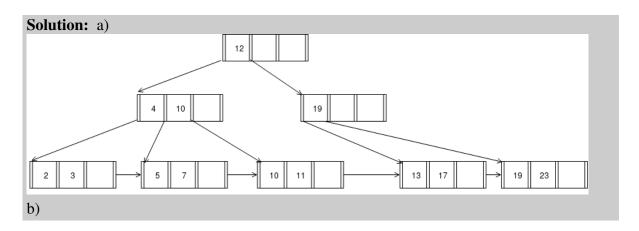
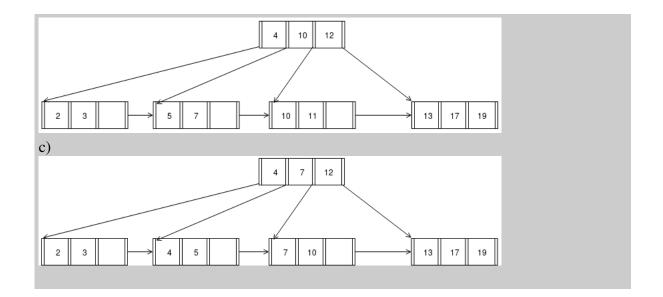


Figure 2: B+ Tree of order d = 4 and height h = 2.

When answering the following questions, be sure to follow the procedures described in class and in your textbook. You can make the following assumptions:

- A left pointer in an internal node guides towards keys < than its corresponding key, while a right pointer guides towards keys ≥.
- A leaf node underflows when the number of **keys** goes bellow $\lceil \frac{d-1}{2} \rceil$.
- An internal node underflows when the number of **pointers** goes below $\lceil \frac{d}{2} \rceil$.


Use the following draw. io template for your answers:


https://cmudb.io/fall2019-hw2

- (a) [15 points] Insert 10^* into the B+tree. Draw the resulting tree.
- (b) **[5 points]** How many pointers (parent-to-child and sibling-to-sibling) do you chase to find all keys between 5 and 15?

 \square 2 \square 3 \blacksquare 4 \square 5 \square 6 \square 7

- (c) [15 points] Then delete 23^* . Draw the resulting tree.
- (d) [10 points] Finally insert 4^* and delete 11^* . Draw the resulting tree.

Question 3: Extendible Hashing......[25 points] Graded by:

Consider an extendible hashing structure such that:

- Each bucket can hold up to two records.
- The hashing function uses the lowest g bits, where g is the global depth.
- (a) Starting from an empty table, insert keys 15, 3, 7, 14.
 - i. [3 points] What is the global depth of the resulting table?
 - \square 0 \square 1 \square 2 \blacksquare 3 \square 4 \square None of the above
 - ii. [3 points] What is the local depth the bucket containing 14?
 - \square 0 \blacksquare 1 \square 2 \square 3 \square 4 \square None of the above
 - iii. [3 points] What is the local depth of the bucket containing 3?
 - \square 0 \square 1 \square 2 \blacksquare 3 \square 4 \square None of the above
- (b) Starting from the result in (a), you insert keys 1, 9, 23, 11, 17.
 - i. [4 points] Which key will first cause a split (without doubling the size of the table)?
 - \Box 1 \Box 9 \Box 23 \Box 11 \blacksquare 17 \Box None of the above
 - ii. [4 points] Which key will first make the table double in size?
 - \Box 1 \Box 9 \blacksquare 23 \Box 11 \Box 17 \Box None of the above
- (c) Now consider the table below, along with the following deletion rules:
 - 1. If two buckets have the same local depth d, and share the first d-1 bits of their indexes (e.g. 010 and 110 share the first 2 bits), then they can be merged if the total capacity fits in a single bucket. The resulting local depth is d-1.
 - 2. If the global depth g becomes strictly greater than all local depths, then the table can be halved in size. The resulting global depth is g 1.

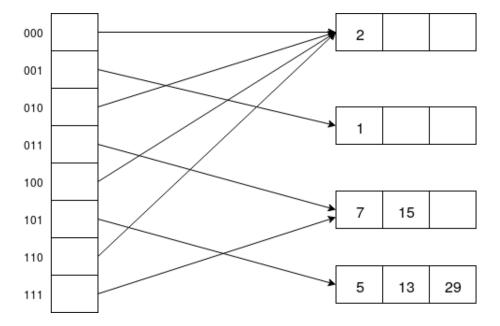


Figure 3: Extendible Hash Table along with the indexes of each bucket

Starting from the table above, delete keys 2, 7, 13, 15, 29.

i. [4 points] Which deletion first causes a reduction in a local depth.

□ 2 □ 7 ■ 13 □ 15 □ 29 □ None of the above

ii. [4 points] Which deletion first causes a reduction in global depth.

 \square 2 \square 7 \blacksquare 13 \square 15 \square 29 \square None of the above

Question 4: Suffix Trees [10 points] Graded by:

Consider the following suffix tree for **unsigned 32-bit integers**.

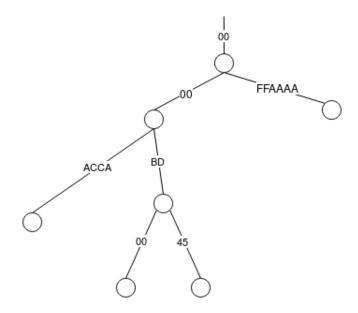
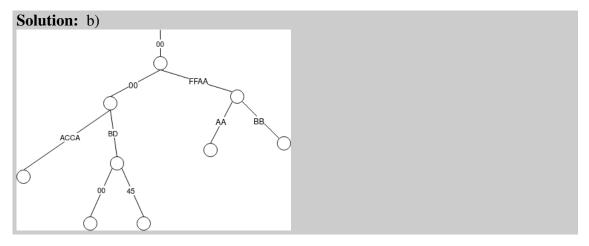



Figure 4: Suffix Tree

- (a) [3 points] Which of the following elements belong to the suffix tree. Select all that apply.
 - $\square \ \, 0x45BD0000 \quad \square \ \, 0x0000CAAC \quad \square \ \, 0xFFAAAA00 \quad \square \ \, 0xACCA0000 \quad \square \ \, 0xBD000000$
 - None of the above
- (b) [7 points] Insert the key 0x00FFAABB. Draw the resulting tree using this template: https://cmudb.io/fall2019-hw4.

