
CARNEGIE MELLON UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

15-445/645 – DATABASE SYSTEMS (FALL 2019)
PROF. ANDY PAVLO

Homework #4 (by Weichen Ke) – Solutions
Due: Wednesday Nov 13, 2019 @ 11:59pm

IMPORTANT:
• Upload this PDF with your answers to Gradescope by 11:59pm on Wednesday Nov 13,

2019.
• Plagiarism: Homework may be discussed with other students, but all homework is to be

completed individually.
• You have to use this PDF for all of your answers.

For your information:
• Graded out of 100 points; 4 questions total
• Rough time estimate: ≈ 1 - 2 hours (0.5 - 1 hours for each question)
Revision : 2019/11/18 20:45

Question Points Score

Serializability and 2PL 20

Deadlock Detection and Prevention 30

Hierarchical Locking 30

Optimistic Concurrency Control 20

Total: 100

Number of Days this Assignment is Late:

Number of Late Day You Have Left:

1

http://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo

15-445/645 (Fall 2019) Homework #4 Page 2 of 11

Question 1: Serializability and 2PL. [20 points]
(a) Yes/No questions:

i. [2 points] Schedules under rigorous 2PL will not have dirty reads.
� Yes 2 No

ii. [2 points] A schedule generated by rigorous 2PL will never cause a deadlock.
2 Yes � No

iii. [2 points] A schedule generated by 2PL is always view serializable.
� Yes 2 No

iv. [2 points] A conflict serializable schedule will never contain a cycle in its prece-
dence graph.
� Yes 2 No

v. [2 points] Every view serializable schedule is conflict serializable.
2 Yes � No
Grading info: -2 for each incorrect answer

(b) Serializability:
Consider the schedule given below in Table 1. R(·) and W(·) stand for ‘Read’ and ‘Write’,
respectively.

time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

T1 R(A) W(A) R(B) W(B)
T2 R(C) R(A) W(A) W(C)
T3 R(B) W(B) R(A)

Table 1: A schedule with 3 transactions

i. [1 point] Is this schedule serial?
2 Yes � No
Grading info: -1 for incorrect answer

ii. [3 points] Give the dependency graph of this schedule. List each edge in the de-
pendency graph like this: ‘Tx → Ty because of Z’. This notation signifies that Tx

precedes Ty because Z was last read/written by Tx before it was read/written by Ty.
Order the edges in ascending order with respect to x.

Solution:

• T1 → T2 because of A

• T1 → T3 because of A

• T2 → T3 because of A

• T3 → T1 because of B

Grading info: -1 for each missing/incorrect edge.
iii. [1 point] Is this schedule conflict serializable?

2 Yes � No

Question 1 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 3 of 11

Grading info: -1 for incorrect answer

iv. [3 points] If you answer “yes” to (iii), provide the equivalent serial schedule. If you
answer “no”, briefly explain why.

Solution: The schedule is not serializable because there are two cycles in the de-
pendency graph (T1 → T2 → T3 → T1 and T1 → T3 → T1).

Grading info: -3 for a justification that does not agree with previous part

v. [2 points] Is this schedule possible under 2PL?
2 Yes � No
Grading info: -2 for incorrect answer

Homework #4 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 4 of 11

Question 2: Deadlock Detection and Prevention [30 points]
(a) Deadlock Detection:

Consider the following lock requests in Table 2. And note that

• S(·) and X(·) stand for ‘shared lock’ and ‘exclusive lock’, respectively.
• T1, T2, and T3 represent three transactions.
• LM stands for ‘lock manager’.
• Transactions will never release a granted lock.

time t1 t2 t3 t4 t5 t6 t7

T1 S(A) S(B) S(C)
T2 S(B) X(A)
T3 X(C) X(B)
LM g

Table 2: Lock requests of three transactions

i. [3 points] For the lock requests in Table 2, determine which lock will be granted
or blocked by the lock manager. Please write ‘g’ in the LM row to indicate the lock
is granted and ‘b’ to indicate the lock is blocked or the transaction has already been
blocked by a former lock request. For example, in the table, the first lock (S(D) at
time t1) is marked as granted.

Solution:

• X(C) at t2: g

• S(A) at t3: g

• S(B) at t4: g

• X(A) at t5: b

• X(B) at t6: b

• S(C) at t7: b

Grading info: Half points for one mistake in the schedule, no points for > 1 mistake.

ii. [4 points] Give the wait-for graph for the lock requests in Table 2. List each edge
in the graph like this: Tx → Ty because of Z (i.e., Tx is waiting for Ty to release its
lock on resource Z). Order the edges in ascending order with respect to x.

Solution:

• T1 → T3 because of C

• T2 → T1 because of A

Question 2 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 5 of 11

• T3 → T1 because of B

• T3 → T2 because of B

Grading info: Half points for 1 missing directed edge, no points if missing > 1.

iii. [3 points] Determine whether there exists a deadlock in the lock requests in Table 2.
If there is a deadlock, point out one cycle.

Solution: Deadlock exists because there is a cycle (T1 → T3 → T1) in the depen-
dency graph.
OR: Deadlock exists because there is a cycle (T1 → T3 → T2 → T1) in the depen-
dency graph.

Grading info: −2 points for not explaining why there is a deadlock

(b) Deadlock Prevention:
Consider the following lock requests in Table 3.
Like before,

• S(·) and X(·) stand for ‘shared lock’ and ‘exclusive lock’, respectively.
• T1, T2, T3, T4, and T5 represent five transactions.
• LM represents a ‘lock manager’.
• Transactions will never release a granted lock.

time t1 t2 t3 t4 t5 t6 t7 t8

T1 X(B) S(A)
T2 X(D) X(C)
T3 S(C) X(B)
T4 X(A) S(D)
LM g

Table 3: Lock requests of four transactions

i. [3 points] For the lock requests in Table 3, determine which lock request will be
granted, blocked or aborted by the lock manager (LM), if it has no deadlock prevention policy.
Please write ‘g’ for grant, ‘b’ for block (or the transaction is already blocked), ‘a’
for abort, and ’−’if the transaction has already died. Again, example is given in the
first column.

Solution:

• X(A) at t2: g

• S(C) at t3: g

• S(A) at t4: b

Question 2 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 6 of 11

• X(D) at t5: g

• X(C) at t6: b

• X(B) at t7: b

• S(D) at t8: b

Grading info: Half points for one mistake in the schedule, no points for > 1 mistake.

ii. [4 points] Give the wait-for graph for the lock requests in Table 3. List each edge
in the graph like this: Tx → Ty because of Z (i.e., Tx is waiting for Ty to release its
lock on resource Z). Order the edges in ascending order with respect to x. If a lock
request is not proposed because the transaction is blocked before making that lock
request, you can ignore that lock request, as if it does not exist.

Solution:

• T1 → T4 because of A

• T2 → T3 because of C

• T3 → T1 because of B

• T4 → T2 because of D

Grading info: Half points for 1 missing directed edge, no points if missing > 1.

iii. [3 points] Determine whether there exists a deadlock in the lock requests in Table
3. If there is a deadlock, point out one cycle.

Solution: Deadlock exists because there is a cycle (T1 → T4 → T2 → T3 → T1)
in the dependency graph.

Grading info: −2 points for not explaining why there is a deadlock

iv. [5 points] To prevent deadlock, we use the lock manager (LM) that adopts the
Wait-Die policy. We assume that in terms of priority: T1 > T2 > T3 > T4. Here,
T1 > T2 because T1 is older than T2 (i.e., older transactions have higher priority).
Determine whether the lock request is granted (‘g’), blocked (‘b’), aborted (‘a’), or
already dead(‘-’). Follow the same format as the previous question.

Solution:

• X(A) at t2: g

• S(C) at t3: g

• S(A) at t4: b (T1 has higher priority)

• X(D) at t5: g

Question 2 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 7 of 11

• X(C) at t6: b (T2 has higher priority)

• X(B) at t7: a (T3 aborts because T1 is holding B)

• S(D) at t8: a (T4 aborts because T2 is waiting for the lock)

Grading info: −2 points for one mistake in the schedule, no points > 1 mistake.

v. [5 points] Now we use the lock manager (LM) that adopts the Wound-Wait policy.
We assume that in terms of priority: T1 > T2 > T3 > T4. Here, T1 > T2 because T1

is older than T2 (i.e., older transactions have higher priority). Determine whether the
lock request is granted (‘g’), blocked (‘b’), granted by aborting another transaction
(‘a’), or the requester is already dead(‘-’). Follow the same format as the previous
question.

Solution:

• X(A) at t2: g

• S(C) at t3: g

• S(A) at t4: a (T1 wounds T4)

• X(D) at t5: g

• X(C) at t6: a (T2 wounds T3)

• X(B) at t7: − (T3 is already dead)

• S(D) at t8: − (T4 is already dead)

Grading info: −2 points for one mistake in the schedule, no points > 1 mistake.

Homework #4 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 8 of 11

Question 3: Hierarchical Locking . [30 points]
Consider a database (D) consisting of two tables, Tablets (T) and CPUs (C). Specifically,

• Tablets(tid, brand, CPU id, OS, year, sales), spans 1000 pages, namely T1 to
T1000

• CPUs(CPU id, brand, frequency, cache), spans 50 pages, namely C1 to C50

Further, each page contains 100 records, and we use the notation T3 : 20 to represent the
20th record on the third page of the Tablets table. Similarly, C5 : 10 represents the 10th record
on the fifth page of the CPUs table.

We use Multiple-granularity locking, with S, X, IS, IX and SIX locks, and four levels of
granularity: (1) database-level (D), (2) table-level (T, C), (3) page-level (T1−T1000, C1−C50),
(4) record-level (T1 : 1− T1000 : 100, C1 : 1− C50 : 100).

For each of the following operations on the database, please determine the sequence of lock
requests that should be generated by a transaction that wants to efficiently carry out these
operations by maximizing concurrency. Please use the fewest number of locks in your
answer. If you use much more locks than necessary (more than 10x), you will get half points.

Please follow the format of the examples listed below:

• write “IS(D)” for a request of database-level IS lock
• write “X(C2 : 30)” for a request of record-level X lock for the 30th record on the

second page of the CPUs table
• write “S(C2 : 30−C3 : 100)” for a request of record-level S lock from the 30th record

on the second page of the CPUs table to the 100th record on the third page of the
CPUs table.

(a) [6 points] Fetch the 25th record on page T233.

Solution: IS(D), IS(A), IS(T233), S(T233 : 25)
Grading info: −2 for each missing/incorrect mistake, −3 for correct but too many locks

(b) [6 points] Scan all the records on pages T1 through T10, and modify the record T2 : 33.

Solution: IX(D), SIX(T), IX(T2), X(T2 : 33);
also acceptable: IX(D), IX(T), S(T1), S(T3 − T10), SIX(T2), X(T2 : 33)
Grading info: −2 for each missing/incorrect mistake, −3 for correct but too many locks

(c) [6 points] Count the number of tablets with ‘year’ > 2014.

Solution: IS(D), S(T);
Grading info: −2 for each missing/incorrect mistake, −3 for correct but too many locks

(d) [6 points] Increase the sales of all tablets by 114514.

Question 3 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 9 of 11

Solution: IX(D), X(T)
Grading info: −2 for each missing/incorrect mistake, −3 for correct but too many locks

(e) [6 points] Capitalize the ‘brand’ of ALL tablets and ALL CPUs.

Solution: X(D)
Also acceptable: IX(D), X(T), X(C)
Grading info: −2 for each missing/incorrect mistake, −3 for correct but too many locks

Homework #4 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 10 of 11

Question 4: Optimistic Concurrency Control [20 points]
Consider the following set of transactions accessing a database with object A, B, C, D. The
questions below assume that the transaction manager is using optimistic concurrency con-
trol (OCC). Assume that a transaction switches from the READ phase immediately into the
VALIDATION phase after its last operation executes.

Note: VALIDATION may or may not succeed for each transaction. If validation fails, the
transaction will get immediately aborted.

You can assume that the DBMS is using the serial validation protocol discussed in class where
only one transaction can be in the validation phase at a time, and each transaction is doing
forward validation (i.e. Each transaction, when validating, checks whether it intersects its
read/write sets with any active transactions that have not yet committed.)

time T1 T2 T3

1 READ(A)
2 READ(A)
3 READ(B)
4 WRITE(B)
5 WRITE(C)
6 VALIDATE?
7 READ(D)
8 READ(B)
9 WRITE(D)

10 WRITE(B)
11 VALIDATE?
12 WRITE?
13 WRITE?
14 WRITE(D)
15 VALIDATE?
16 WRITE?

Figure 1: An execution schedule

(a) [6 points] Will T1 abort?
2 Yes
� No

Solution: T1 does not need to abort because it does not write A.

Grading info: Full points if they got it right

(b) [6 points] Will T2 abort?
� Yes
2 No

Solution: T2’s read-set intersects with T1’s write-set (B), and its write-set intersects
with T3’s read-set (D), so it will fail the VALIDATION phase.

Question 4 continues. . .

15-445/645 (Fall 2019) Homework #4 Page 11 of 11

Grading info: Full points if they got it right

(c) [6 points] Will T3 abort?
2 Yes
� No

Solution: Although T3’s read-set intersects with T2’s write-set, T2 will get aborted, so
T3 does not need to abort.

Grading info: Full points if they got it right

(d) [2 points] OCC is good to use when there are few conflicts.
� True
2 False

Solution: From the slides: If the database is large and the workload is not skewed, then
there is a low probability of conflict, so locking is wasteful.

Grading info: Full points if they got it right.

End of Homework #4

