
Lecture #05: Buffer Pools
15-445/645 Database Systems (Fall 2019)

https://15445.courses.cs.cmu.edu/fall2019/
Carnegie Mellon University

Prof. Andy Pavlo

1 Locks vs. Latches
We need to make a distinction between locks and latches when discussing how the DBMS protects its
internal elements.

Locks

• Protect the database logical contents (e.g., tuples, tables, databases) from other transactions.
• Held for transaction duration.
• Need to be able to rollback changes.

Latches

• Protects the critical sections of the DBMS’s internal data structures from other threads.
• Held for operation duration.
• Do not need to be able to rollback changes.

2 Buffer Pool
The buffer pool is an in-memory cache of pages read from disk. The DBMS always knows better so we
want to manage memory and pages ourselves

It is a region of memory organized as an array of fixed size pages. Each array entry is called a frame. When
the DBMS requests a page, an exact copy is placed into one of these frames

Meta-data maintained by the buffer pool:

• Page Table: In-memory hash table that keeps track of pages that are currently in memory. It maps
page ids to frame locations in the buffer pool.

• Dirty-flag: Threads set this flag when it modifies a page. This indicates to storage manager that the
page must be written back to disk.

• Pin Counter: This tracks the number of threads that are currently accessing that page (either reading
or modifying it). A thread has to increment the counter before they access the page. If a page’s count
is greater than zero, then the storage manager is not allowed to evict that page from memory.

Optimizations:

• Multiple Buffer Pools: The DBMS can also have multiple buffer pools for different purposes. This
helps reduce latch contention and improves locality

• Pre-Fetching: The DBMS can also optimize by pre fetching pages based on the query plan. Com-
monly done when accessing pages sequentially.

• Scan Sharing: Query cursors can attach to other cursors and scan pages together.

Allocation Policies:

• Global Policies: How a DBMS should make decisions for all active txns.
• Local Policies: Allocate frames to a specific txn without considering the behavior of concurrent txns.

https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/


Fall 2019– Lecture #05 Buffer Pools

3 Replacement Policies
A replacement policy is an algorithm that the DBMS implements that makes a decision on which pages to
evict from buffer pool when it needs space.

Implementation goals:

• Correctness
• Accuracy
• Speed
• Meta-data overhead

Least Recently Used (LRU)
• Maintain a timestamp of when each page was last accessed.
• DBMS picks to evict the page with the oldest timestamp.

CLOCK
Approximation of LRU without needing a separate timestamp per page.

• Each page has a reference bit
• When a page is accessed, set to 1

Organize the pages in a circular buffer with a “clock hand”

• Upon sweeping check if a pages bit is set to 1
• If yes, set to zero, if no, then evict
• Clock hand remembers position between evictions

Alternatives
Problems with LRU and Clock replacement policies:

• LRU and Clock are susceptible to sequential flooding where the buffer pool’s contents are trashed
due to a sequential scan.

• It may be that the LRU page is actually important due to not tracking meta-data of how a page is used.

Better solutions:

• LRU-K: Take into account history of the last K references
• Priority hints: Allow txns to tell the buffer pool whether page is important or not
• Localization: Choose pages to evict on a per txn/query basis

15-445/645 Database Systems
Page 2 of 2

https://15445.courses.cs.cmu.edu/fall2019/

	Locks vs. Latches
	Buffer Pool
	Replacement Policies

