
Lecture #10: Sorting & Aggregation Algorithms
15-445/645 Database Systems (Fall 2019)

https://15445.courses.cs.cmu.edu/fall2019/
Carnegie Mellon University

Prof. Andy Pavlo

1 Sorting
We need sorting because in the relation model, tuples in a table have no specific order Sorting is (potentially)
used in ORDER BY, GROUP BY, JOIN, and DISTINCT operators.

We can accelerate sorting using a clustered B+tree by scanning the leaf nodes from left to right. This is
a bad idea, however, if we use an unclustered B+tree to sort because it causes a lot of I/O reads (random
access through pointer chasing).

If the data that we need to sort fits in memory, then the DBMS can use a standard sorting algorithms (e.g.,
quicksort). If the data does not fit, then the DBMS needs to use external sorting that is able to spill to disk
as needed and prefers sequential over random I/O.

2 External Merge Sort
Divide-and-conquer sorting algorithm that splits the data set into separate runs and then sorts them individ-
ually. It can spill runs to disk as needed then read them back in one at a time.

Phase #1 – Sorting: Sort small chunks of data that fit in main memory, and then write back to disk.

Phase #2 – Merge: Combine sorted sub-files into a larger single file.

Two-way Merge Sort
1. Pass #0: Reads every B pages of the table into memory. Sorts them, and writes them back into disk.

Each sorted set of pages is called a run.
2. Pass #1,2,3...: Recursively merges pairs of runs into runs twice as long.

Number of Passes: 1 + dlog2Ne
Total I/O Cost: 2N × (# of passes)

General (K-way) Merge Sort
1. Pass #0: Use B buffer pages, produce N/B sorted runs of size B.
2. Pass #1,2,3...: Recursively merge B − 1 runs.

Number of Passes = 1 +
⌈
logB−1

⌈
N
B

⌉⌉
Total I/O Cost: 2N × (# of passes)

Double Buffering Optimization
Prefetch the next run in the background and store it in a second buffer while the system is processing the
current run. This reduces the wait time for I/O requests at each step by continuously utilizing the disk.

https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/


Fall 2019– Lecture #10 Sorting & Aggregation Algorithms

3 Aggregations
An aggregation operator in a query plan collapses the values of one or more tuples into a single scalar value.
There are two approaches for implementing an aggregation: (1) sorting and (2) hashing.

Sorting
The DBMS first sorts the tuples on the GROUP BY key(s). It can use either an in-memory sorting algorithm if
everything fits in the buffer pool (e.g., quicksort) or the external merge sort algorithm if the size of the data
exceeds memory.

The DBMS then performs a sequential scan over the sorted data to compute the aggregation. The output of
the operator will be sorted on the keys.

Hashing
Hashing can be computationally cheaper than sorting for computing aggregations. The DBMS populates an
ephemeral hash table as it scans the table. For each record, check whether there is already an entry in the
hash table and perform the appropriate modification.

If the size of the hash table is too large to fit in memory, then the DBMS has to spill it to disk:

• Phase #1 – Partition: Use a hash function h1 to split tuples into partitions on disk based on target
hash key. This will put all tuples that match into the same partition. The DBMS spills partitions to
disk via output buffers.

• Phase #2 – ReHash: For each partition on disk, read its pages into memory and build an in-memory
hash table based on a second hash function h2 (where h1 6= h2). Then go through each bucket of this
hash table to bring together matching tuples to compute the aggregation. Note that this assumes that
each partition fits in memory.

During the ReHash phase, the DBMS can store pairs of the form (GroupByKey→RunningValue) to compute
the aggregation. The contents of RunningValue depends on the aggregation function. To insert a new tuple
into the hash table:

• If it finds a matching GroupByKey, then update the RunningValue appropriately.
• Else insert a new (GroupByKey→RunningValue) pair.

15-445/645 Database Systems
Page 2 of 2

https://15445.courses.cs.cmu.edu/fall2019/

	Sorting
	External Merge Sort
	Aggregations

