
Lecture #17: Two-Phase Locking
15-445/645 Database Systems (Fall 2019)

https://15445.courses.cs.cmu.edu/fall2019/
Carnegie Mellon University

Prof. Andy Pavlo

1 Transaction Locks
The DBMS contains a centralized lock manager that decides decisions whether a transaction can have a lock
or not. It has a global view of whats going on inside the system.

• Shared Lock (S-LOCK): A lock that allows multiple transactions to read the same object at the same
time. If one transaction holds a shared lock, then another transaction can also acquire that same shared
lock.

• Exclusive Lock (X-LOCK): Allows a transaction to modify an object. This lock is not compatible for
any other lock. Only one transaction can hold an exclusive lock at a time.

Executing with locks:

1. Transactions request locks (or upgrades) from the lock manager.
2. The lock manager grants or blocks requests based on what locks are currently held by other transac-

tions.
3. Transactions release locks when they no longer need them.
4. The lock manager updates its internal lock-table and then gives locks to waiting transactions.

2 Two-Phase Locking
Two-Phase locking (2PL) is a pessimistic concurrency control protocol that determines whether a transaction
is allowed to access an object in the database on the fly. The protocol does not need to know all of the queries
that a transaction will execute ahead of time.

Phase #1: Growing

• Each transaction requests the locks that it needs from the DBMS’s lock manager.
• The lock manager grants/denies lock requests.

Phase #2: Shrinking

• The transaction enters this phase immediately after it releases its first lock.
• The transaction is allowed to only release locks that it previously acquired. It cannot acquire new

locks in this phase.

On its own, 2PL is sufficient to guarantee conflict serializability. It generates schedules whose precedence
graph is acyclic. But it is susceptible to cascading aborts, which is when a transaction aborts and now
another transaction must be rolled back, which results in wasted work.

There are also potential schedules that are serializable but would not be allowed by 2PL (locking can limit
concurrency).

https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/


Fall 2019 – Lecture #17 Two-Phase Locking

3 Strong Strict Two-Phase Locking
Strong Strict 2PL (SSPL, also known as Rigorous 2PL) is a variant of 2PL where the transaction only re-
leases locks when it finishes. A schedule is strict if a value written by a transaction is not read or overwritten
by other transactions until that transaction finishes. Thus, there is not a shrinking phase in SS2PL like in
regular 2PL.

The advantage of this approach is that the DBMS does not incur cascading aborts. The DBMS can also
reverse the changes of an aborted transaction by just restoring original values of modified tuples.

4 2PL Deadlock Handling
A deadlock is a cycle of transactions waiting for locks to be released by each other. There are two approaches
to handling deadlocks in 2PL: detection and prevention.

Approach #1: Deadlock Detection
The DBMS creates a waits-for graph: Nodes are transactions, and edge from Ti to Tj if transaction Ti is
waiting for transaction Tj to release a lock. The system will periodically check for cycles in waits-for graph
and then make a decision on how to break it.

• When the DBMS detects a deadlock, it will select a “victim” transaction to rollback to break the cycle.
• The victim transaction will either restart or abort depending on how the application invoked it
• There are multiple transaction properties to consider when selecting a victim. There is no one choice

that is better than others. 2PL DBMSs all do different things:
1. By age (newest or oldest timestamp).
2. By progress (least/most queries executed).
3. By the # of items already locked.
4. By the # of transactions that we have to rollback with it.
5. # of times a transaction has been restarted in the past

• Rollback Length: After selecting a victim transaction to abort, the DBMS can also decide on how
far to rollback the transaction’s changes. Can be either the entire transaction or just enough queries to
break the deadlock.

Approach #2: Deadlock Prevention
When a transaction tries to acquire a lock, if that lock is currently held by another transaction, then perform
some action to prevent a deadlock. Assign priorities based on timestamps (e.g., older means higher priority).
These schemes guarantee no deadlocks because only one type of direction is allowed when waiting for a
lock. When a transaction restarts, its (new) priority is its old timestamp.

• Wait-Die (“Old waits for Young”): If T1 has higher priority, T1 waits for T2. Otherwise T1 aborts
• Wound-Wait (“Young waits for Old”): If T1 has higher priority, T2 aborts. Otherwise T1 waits.

5 Lock Granularities
If a transaction wants to update one billion tuples, it has to ask the DBMS’s lock manager for a billion locks.
This will be slow because the transaction has to take latches in the lock manager’s internal lock table data
structure as it acquires/releases locks.

To avoid this overhead, the DBMS can use to use a lock hierarchy that allows a transaction to take more
coarse-grained locks in the system. For example, it could acquire a single lock on the table with one billion

15-445/645 Database Systems
Page 2 of 3

https://15445.courses.cs.cmu.edu/fall2019/


Fall 2019 – Lecture #17 Two-Phase Locking

tuples instead of one billion separate locks. When a a transaction acquires a lock for an object in this
hierarchy, it implicitly acquires the locks for all its children.

Intention locks allow a higher level node to be locked in shared or exclusive mode without having to check
all descendant nodes. If a node is in an intention mode, then explicit locking is being done at a lower level
in the tree.

• Intention-Shared (IS): Indicates explicit locking at a lower level with shared locks.
• Intention-Exclusive (IX): Indicates explicit locking at a lower level with exclusive or shared locks.
• Shared+Intention-Exclusive (SIX): The sub-tree rooted at that node is locked explicitly in shared

mode and explicit locking is being done at a lower level with exclusive-mode locks.

6 Conclusion
2PL is used in most DBMSs that support transactions. The protocol automatically provides correct inter-
leavings of transaction operations, but it requires additional steps to handle deadlocks.

The application does not typically set locks manually using SQL. The DBMS acquires the locks automati-
cally before a query accesses or modifies an object. But sometimes the application can provide the DBMS
with hints to help it improve concurrency:

SELECT...FOR UPDATE: Perform a select and then sets an exclusive lock on fetched tuples

15-445/645 Database Systems
Page 3 of 3

https://15445.courses.cs.cmu.edu/fall2019/

	Transaction Locks
	Two-Phase Locking
	Strong Strict Two-Phase Locking
	2PL Deadlock Handling
	Lock Granularities
	Conclusion

