Lecture #18: Timestamp Ordering

15-445/645 Database Systems (Fall 2019)
https://15445.courses.cs.cmu.edu/fall2019/
Carnegie Mellon University
Prof. Andy Pavlo

1 Timestamp Ordering Concurrency Control

Timestamp ordering (T/O) is a optimistic class of concurrency control protocols where the DBMS assumes
that transaction conflicts are rare. Instead of requiring transactions to acquire locks before they are allowed
to read/write to a database object, the DBMS instead uses timestamps to determine the serializability order
of transactions.

Each transaction T; is assigned a unique fixed timestamp that is monotonically increasing:

* Let TS(T;) be the timestamp allocated to transaction 7;
* Different schemes assign timestamps at different times during the transaction

If TS(T;) < TS(T}), then the DBMS must ensure that the execution schedule is equivalent to a serial schedule
where T;; appears before 7.

Multiple timestamp allocation implementation strategies:

* System clock
* Logical counter
* Hybrid

2 Basic Timestamp Ordering (BASIC T/0O)

Every database object X is tagged with timestamp of the last transaction that successfully did read/write:

* W-TS(X): Write timestamp on object X.
* R-TS(X): Read timestamp on object X.

The DBMS check timestamps for every operation. If transaction tries to access an object “from the future”,
then the DBMS aborts that transaction and restarts it.

Read Operations:

* If TS(7;) < W-TS(X) this violates timestamp order of 7; with regard to the writer of X. Thus you
abort T; and restart it with same TS.
* Else:
— Allow T; to read X.
— Update R-TS(X) to max(R-TS(X), TS(T3)).
— Have to make a local copy of X to ensure repeatable reads for T;.
— Last step may be skipped in lower isolation levels.

Write Operations:

o If TS(T;) < R-TS(X) or TS(T;) < W-TS(X), abort and restart 7.
e Else:


https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/

Fall 2019 — Lecture #18 Timestamp Ordering

— Allow T; to write X and update W-TS(X) to 7.
— Also have to make a local copy of X to ensure repeatable reads for 7;.

Optimization: Thomas Write Rule

e If TS(T;) < R-TS(X): Abort and restart 7
o If TS(73) < W-TS(X):
— Thomas Write Rule: Ignore the write and allow transaction to continue.
— Note that this violates timestamp order of 7; but this is okay because no other transaction will
ever read 7;’s write to object X.
* Else: Allow T; to write X and update W-TS(X)

The Basic T/O protocol generates a schedule that is conflict serializable if you do not use Thomas Write
Rule. It cannot have deadlocks because no transaction ever waits. But there is a possibility of starvation for
long transactions if short transactions keep causing conflicts.

It also permits schedules that are not recoverable. A schedule is recoverable if transactions commit only
after all transactions whose changes they read or commit. Otherwise, the DBMS cannot guarantee that
transactions read data that will be restored after recovering from a crash.

Potential Issues:

* High overhead from copying data to transaction’s workspace and from updating timestamps.

* Long running transactions can get starved: The likelihood that a transaction will read something from
a newer transaction increases.

» Suffers from the timestamp allocation bottleneck on highly concurrent systems.

3 Optimistic Concurrency Control (OCC)

If we assume that conflicts between transactions are rare and most transactions are short lived, it may be a
better approach to optimize for the common case that assumes transactions are not going to have conflicts.

OCC works well when the number of conflicts is low. This is when either all of the transactions are read-
only or when transactions access disjoint subsets of data. If the database is large and the workload is not
skewed, then there is a low probability of conflict, so again locking is wasteful

The DBMS creates a private workspace for each transaction:

* All modifications are applied to the workspace.
* Any object read is copied into workspace.
* No other transaction can read the changes made by another transaction in its private workspace.

When a transaction commits, the DBMS compares the transaction’s workspace write set to see whether it
conflicts with other transactions. If there are no conflicts, the write set is installed into the “global” database

OCC Transaction Phases:

* Read Phase: Track the read/write sets of transactions and store their writes in a private workspace.

» Validation Phase: When a transaction commits, check whether it conflicts with other transactions.

* Write Phase: If validation succeeds, apply private changes to database. Otherwise abort and restart
the transaction.

Validation Phase
This is where the DBMS checks whether a transaction conflicts with other transactions. The DBMS needs to
guarantee that only serializable schedules are permitted. The DBMS assigns transactions timestamps when

15-445/645 Database Systems
Page 2 of 3


https://15445.courses.cs.cmu.edu/fall2019/

Fall 2019 — Lecture #18 Timestamp Ordering

they enter the validation phase.

T; checks other transactions for RW and WW conflicts and makes sure that all conflicts go one way (from
older transactions to younger transactions). The DBMS checks the timestamp ordering of the committing
transaction with all other running transactions:

If TS(T;) < TS(T}), then one of the following three conditions must hold:

1. T; completes all three phases before T); begins

2. T; completes before T starts its Write phase, and T; does not write to any object read by 7T}.

3. T; completes its Read phase before T); completes its Read phase, and T; does not write to any object
that is either read or written by 7’;.

Potential Issues:

* High overhead for copying data locally into the transaction’s private workspace.

* Validation/Write phase bottlenecks.

* Aborts are potentially more wasteful than in other protocols because they only occur after a transaction
has already executed.

* Suffers from timestamp allocation bottleneck.

4 Partition-Based T/O

When a transaction commits in OCC, the DBMS has check whether there is a conflict with concurrent
transactions across the entire database. This is slow if we have a lot of concurrent transactions because the
DBMS has to acquire latches to do all of these checks.

An alternative is to split the database up in disjoint subsets called partitions (aka shards) and then only
check for conflicts between transactions that are running in the same partition.

Partitions are protected by a single lock. Transactions are assigned timestamps based on when they arrive at
the DBMS. Each transaction is queued at the partitions it needs before it starts running:

* The transaction acquires a partition’s lock if it has the lowest timestamp in that partition’s queue.

* The transaction starts when it has all of the locks for all the partitions that it will access during
execution.

* Transactions can read/write anything that they want at the partitions that they have locked. If a trans-
action tries to access a partition that it does not have the lock, it is aborted + restarted.

Potential Issues:

* Partition-based T/O protocol is fast if: (1) the DBMS knows what partitions the transaction needs
before it starts and (2) most (if not all) transactions only need to access a single partition.

* The protocol only works if (1) transactions are stored procedures (network communication causes the
partition to idle because it has to wait for the next query to execute) and (2) transactions only touch
one partition (multi-partition transactions cause partitions to be idle because partitions have to wait
for the next query to execute).

15-445/645 Database Systems
Page 3 of 3


https://15445.courses.cs.cmu.edu/fall2019/

	Timestamp Ordering Concurrency Control
	Basic Timestamp Ordering (BASIC T/O)
	Optimistic Concurrency Control (OCC)
	Partition-Based T/O

