
Lecture #19: Multi-Version Concurrency Control
15-445/645 Database Systems (Fall 2019)

https://15445.courses.cs.cmu.edu/fall2019/
Carnegie Mellon University

Prof. Andy Pavlo

1 Multi-Version Concurrency Control
Multi-Version Concurrency Control (MVCC) is a larger concept than just a concurrency control protocol. It
involves all aspect of the DBMS’s design and implementation. MVCC is the most widely used scheme in
DBMS. It is now used in almost every new DBMS implemented in last 10 years. Even some systems (e.g.,
NoSQL) that do not support multi-statement transactions use it.

The DBMS maintains multiple physical versions of a single logical object in the database.

• When a transaction writes to an object, the DBMS creates a new version of that object.
• When a transaction reads an object, it reads the newest version that existed when the transaction

started.

The original MVCC protocol for DBMSs was first proposed in 1978 MIT PhD dissertation. The first imple-
mentation in a real DBMS was in InterBase (now open-sourced as Firebird) by Jim Starkey, who later went
on to be the co-founder of NuoDB.

Key Properties
Writers don’t block the readers. Readers don’t block the writers.

Read-only transactions can read a consistent snapshot without acquiring locks. Timestamps are used to
determine visibility.

Multi-versioned DBMSs can support time-travel queries that can read the database at a point-in-time snap-
shot.

There are four important MVCC design decisions:

1. Concurrency Control Protocol (T/O, OCC, 2PL, etc).
2. Version Storage
3. Garbage collection
4. Index Management

2 Version Storage
This how the DBMS will store the different physical versions of a logical object.

The DBMS uses the tuple’s pointer field to create a version chain per logical tuple. This allows the DBMS
to find the version that is visible to a particular transaction at runtime. Indexes always point to the head of
the chain. A thread traverses chain until you find the version that is visible to you. Different storage schemes
determine where/what to store for each version.

Approach #1: Append-Only Storage – New versions are appended to the same table space.

https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/


Fall 2019 – Lecture #19 Multi-Version Concurrency Control

• Oldest-To-Newest (O2N): Append new version to end of chain, look-ups require entire chain traver-
sal.

• Newest-To-Oldest (N2O): Head of chain is newest, look-ups are quick, but indexes need to be up-
dated every version.

Approach #2: Time-Travel Storage – Old versions are copied to separate table space.

Approach #3: Delta Storage – The original values of the modified attributes are copied into a separate
delta record space.

3 Garbage Collection
The DBMS needs to remove reclaimable physical versions from the database over time.

Approach #1: Tuple Level Garbage Collection – Find old versions by examining tuples directly

• Background Vacuuming: Separate threads periodically scan the table and look for reclaimable ver-
sions, works with any version storage scheme.

• Cooperative Cleaning: Worker threads identify reclaimable versions as they traverse version chain.
Only works with O2N.

Approach #2: Transaction Level – Each transaction keeps track of its own read/write set. When a transac-
tion completes, the garbage collector can use that to identify what tuples to reclaim. The DBMS determines
when all versions created by a finished transaction are no longer visible.

4 Index Management
All primary key (pkey) indexes always point to version chain head. How often the DBMS has to update the
pkey index depends on whether the system creates new versions when a tuple is updated. If a transaction
updates a pkey attribute(s), then this is treated as a DELETE followed by an INSERT.

Managing secondary indexes is more complicated:

• Approach #1: Logical Pointers – Use a fixed identifier per tuple that does not change. Requires an
extra indirection layer that maps the logical id to the physical location of the tuple (Primary Key vs
Tuple ID).

• Approach #2: Physical Pointers – Use the physical address to the version chain head

15-445/645 Database Systems
Page 2 of 2

https://15445.courses.cs.cmu.edu/fall2019/

	Multi-Version Concurrency Control
	Version Storage
	Garbage Collection
	Index Management

