
Lecture #22: Introduction to Distributed Databases
15-445/645 Database Systems (Fall 2019)

https://15445.courses.cs.cmu.edu/fall2019/
Carnegie Mellon University

Prof. Andy Pavlo

1 Distributed DBMSs
One can use the building blocks from single-node DBMSs to support transaction processing and query
execution in distributed environments. An important goal in designing a distributed DBMS is to make it
fault tolerant (i.e., to avoid a single one node failure taking down the entire system).

Differences between parallel and distributed DBMSs:

Parallel Database:

• Nodes are physically close to each other.
• Nodes are connected via high-speed LAN (fast, reliable communication fabric).
• The communication cost between nodes is assumed to be small. As such, one does not need to worry

about nodes crashing or packets getting dropped when designing internal protocols.

Distributed Database:

• Nodes can be far from each other.
• Nodes are potentially connected via a public network, which can be slow and unreliable.
• The communication cost and connection problems cannot be ignored (i.e., nodes can crash, and pack-

ets can get dropped).

2 System Architectures
A DBMS’s system architecture specifies what shared resources are directly accessible to CPUs. It affects
how CPUs coordinate with each other and where they retrieve and store objects in the database.

A single-node DBMS uses what is called a shared everything architecture. This single node executes work-
ers on a local CPU(s) with its own local memory address space and disk.

Shared Memory
CPUs have access to common memory address space via a fast interconnect. CPUs also share the same
disk. In practice, no one does this, as this is provided at the OS / kernel level. It causes problems, since
each process’s scope of memory is the same memory address space, which could be modified by multiple
processes.

Each processor has a global view of all the in-memory data structures. Each DBMS instance on a processor
has to “know” about the other instances.

Shared Disk
All CPUs can read and write to a single logical disk directly via an interconnect, but each have their own
private memories. This approach is more common in cloud-based DBMSs.

https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/


Fall 2019 – Lecture #22 Introduction to Distributed Databases

The DBMS’s execution layer can scale independently from the storage layer. Adding new storage nodes or
execution nodes does not affect the layout or location of data in the other layer.

Nodes must send messages between them to learn about other node’s current state. That is, since memory is
local, if data is modified, changes must be communicated to other CPUs in the case that piece of data is in
main memory for the other CPUs.

Nodes have their own buffer pool and are considered stateless. A node crash does not affect the state of the
database since that is stored separately on the shared disk. The storage layer persists the state in the case of
crashes.

Shared Nothing
Each node has its own CPU, memory, and disk. Nodes only communicate with each other via network.

It is more difficult to increase capacity in this architecture because the DBMS has to physically move data
to new nodes. It is also difficult to ensure consistency across all nodes in the DBMS, since the nodes must
coordinate with each other on the state of transactions. The advantage, however, is that shared nothing
DBMSs can potentially achieve better performance and are more efficient then other types of distributed
DBMS architectures.

3 Design Issues
Some design questions to consider that will be covered more in-depth in future lectures:

• How does the application find data?
• How should queries be executed on a distributed data? Should the query be pushed to where the data

is located?
• Or should the data be pooled into a common location to execute the query?
• How does the DBMS ensure correctness?

Another design decision to make involves deciding between homogeneous and heterogeneous nodes, both
used in modern-day systems:

Homogeneous: Every node in the cluster can perform the same set of tasks (albeit on potentially different
partitions of data), lending itself well to a shared nothing architecture. This makes provisioning and failover
“easier”. Failed tasks are assigned to available nodes.

Heterogeneous: Nodes are assigned specific tasks, so communication must happen between nodes to carry
out a given task. Can allow a single physical node to host multiple “virtual” node types for dedicated tasks.
Can independently scale from one node to other.

4 Partitioning Schemes
Split database across multiple resources, including disks, nodes, processors. This process is sometimes
called sharding in NoSQL systems. The DBMS executes query fragments on each partition and then com-
bines the results to produce a single answer. Users should not be required to know where data is physically
located and how tables are partitioned or replicated. A SQL query that works on a single-node DBMS
should work the same on a distributed DBMS.

We want to pick a partitioning scheme that maximizes single-node transactions, or transactions that only
access data contained on one partition. This allows the DBMS to not need to coordinate the behavior of
concurrent transactions running on other nodes. On the other hand, a distributed transaction accesses data

15-445/645 Database Systems
Page 2 of 3

https://15445.courses.cs.cmu.edu/fall2019/


Fall 2019 – Lecture #22 Introduction to Distributed Databases

at one or more partitions. This requires expensive, difficult coordination, discussed in the below section.

For logically partitioned nodes, particular nodes are in charge of accessing specific tuples from a shared
disk. For physically partitioned nodes, each shared nothing node reads and updates tuples it contains on its
own local disk.

Implementation
Naive Table Partitioning: Each node stores one table, assuming enough storage space for a given node.
This is each to implement as a query is just routed to a specific partitioning. This can be bad, since it is not
scalable. One partition’s resources can be exhausted if that one table is queried on often, not using all nodes
available.

Horizontal Partitioning: Split a table’s tuples into disjoint subsets. Choose column(s) that divides the
database equally in terms of size, load, or usage, called the partitioning key(s). The DBMS can partition a
database physical (shared nothing) or logically (shared disk) via hash partitioning or range partitioning.

5 Distributed Concurrency Control
If the DBMS supports multi-operation and distributed transactions, we need a way to coordinate their exe-
cution in the system.

Coordinator
This is a centralized approach with a global “traffic cop” that coordinates all the behavior. The client
communicates with the coordinator to acquire locks on the partitions that the client wants to access. Once it
receives an acknowledgement from the coordinator, the client sends its queries to those partitions.

Once all queries for a given transaction are done, the client sends a commit request to the coordinator.
The coordinator then communicates with the partitions involved in the transaction to determine whether the
transaction is allowed to commit.

Middleware
This is the same as the centralized coordinator except that all queries are sent to a middleware directly layer.

Decentralized
In a decentralized approach, nodes organize themselves. The client directly sends queries to one of the
partitions. This home partition will send results back to the client. The home partition is in charge of
communicating with other partitions and committing accordingly.

Centralized approaches give way to a bottleneck in the case that multiple clients are trying to acquire locks
on the same partitions. It can be better for distributed 2PL as it has a central view of the locks and can handle
deadlocks more quickly. This is non-trivial with decentralized approaches.

15-445/645 Database Systems
Page 3 of 3

https://15445.courses.cs.cmu.edu/fall2019/

	Distributed DBMSs
	System Architectures
	Design Issues
	Partitioning Schemes
	Distributed Concurrency Control

