
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

06 Hash Tables

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Project #1 is due Fri Sept 27th @ 11:59pm

Homework #2 is due Mon Sept 30th @ 11:59pm

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

We are now going to talk about how
to support the DBMS's execution
engine to read/write data from pages.

Two types of data structures:
→ Hash Tables
→ Trees

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DATA STRUCTURES

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DESIGN DECISIONS

Data Organization
→ How we layout data structure in memory/pages and what

information to store to support efficient access.

Concurrency
→ How to enable multiple threads to access the data

structure at the same time without causing problems.

5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HASH TABLES

A hash table implements an unordered
associative array that maps keys to values.

It uses a hash function to compute an offset into
the array for a given key, from which the desired
value can be found.

Space Complexity: O(n)
Operation Complexity:
→ Average: O(1)
→ Worst: O(n)

6

Money cares about constants!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store.

To find an entry, mod the key by the
number of elements to find the offset
in the array.

7

hash(key)

⋮

0

1

2

n

abc

def

xyz

Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store.

To find an entry, mod the key by the
number of elements to find the offset
in the array.

7

hash(key)

⋮

0

1

2

n

abcdefghi

defghijk

xyz123

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ASSUMPTIONS

You know the number of elements
ahead of time.

Each key is unique.

Perfect hash function.
→ If key1≠key2, then

hash(key1)≠hash(key2)

8

hash(key)

⋮

0

1

2

n

abcdefghi

defghijk

xyz123

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HASH TABLE

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs.

additional instructions to find/insert keys.

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TODAY'S AGENDA

Hash Functions

Static Hashing Schemes

Dynamic Hashing Schemes

10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HASH FUNCTIONS

For any input key, return an integer
representation of that key.

We do not want to use a cryptographic hash
function for DBMS hash tables.

We want something that is fast and has a low
collision rate.

11

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HASH FUNCTIONS

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed to a fast, general purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

12

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash

CMU 15-445/645 (Fall 2019)

HASH FUNCTION BENCHMARK

13

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Key Size (bytes)

crc64 std::hash MurmurHash3 CityHash FarmHash XXHash3

Source: Fredrik Widlund

Intel Core i7-8700K @ 3.70GHz

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://github.com/apavlo/hash-function-benchmark

CMU 15-445/645 (Fall 2019)

HASH FUNCTION BENCHMARK

14

0

7000

14000

21000

28000

1 51 101 151 201 251

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Key Size (bytes)

crc64 std::hash MurmurHash3 CityHash FarmHash XXHash3

Source: Fredrik Widlund

Intel Core i7-8700K @ 3.70GHz

32

64
128

192

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://github.com/apavlo/hash-function-benchmark

CMU 15-445/645 (Fall 2019)

STATIC HASHING SCHEMES

Approach #1: Linear Probe Hashing

Approach #2: Robin Hood Hashing

Approach #3: Cuckoo Hashing

15

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the
next free slot in the table.
→ To determine whether an element is present, hash to a

location in the index and scan for it.
→ Have to store the key in the index to know when to stop

scanning.
→ Insertions and deletions are generalizations of lookups.

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

<key>|<value>

LINEAR PROBE HASHING

17

A
B
C
D

hash(key)

| valA

E
F

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING

17

A
B
C
D

hash(key)

| valA

| valB

E
F

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING

17

A
B
C
D

hash(key)

| valA

| valB

| valC

E
F

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING

17

A
B
C
D

hash(key)

| valA

| valB

| valC

| valDE
F

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING

17

A
B
C
D

hash(key)

| valA

| valB

| valC

| valDE

| valEF

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING

17

A
B
C
D

hash(key)

| valA

| valB

| valC

| valDE

| valEF

| valF

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

18

A
B
C
D

hash(key)

| valA

| valB

| valC

E
F

| valD

| valE

| valF

Delete

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

18

A
B
C
D

hash(key)

| valA

| valB

E
F

| valD

| valE

| valF

Delete

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

18

A
B
C
D

hash(key)

| valA

| valB

E
F

| valD

| valE

| valF

Find

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

Approach #1: Tombstone

18

A
B
C
D

hash(key)

| valA

| valB

E
F

| valD

| valE

| valF

Find

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

Approach #1: Tombstone

Approach #2: Movement

18

A
B
C
D

hash(key)

| valA

| valB

E
F

| valD

| valE

| valF

Find

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

Approach #1: Tombstone

Approach #2: Movement

18

A
B
C
D

hash(key)

| valA

| valB

E
F

| valD

| valE

| valF

Find

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

Approach #1: Tombstone

Approach #2: Movement

18

A
B
C
D

hash(key)

| valA

| valB

E
F

| valD

| valE

| valF

Find

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR PROBE HASHING DELETES

Approach #1: Tombstone

Approach #2: Movement

18

A
B
C
D

hash(key)

| valA

| valB

E
F

| valD

| valE

| valF

Find

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

NON-UNIQUE KEYS

Choice #1: Separate Linked List
→ Store values in separate storage area for

each key.

Choice #2: Redundant Keys
→ Store duplicate keys entries together in

the hash table.

19

XYZ

ABC

value1
value2
value3

Value Lists

value1
value2

XYZ|value1

ABC|value1

XYZ|value2

XYZ|value3

ABC|value2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots
from "rich" keys and give them to "poor" keys.
→ Each key tracks the number of positions they are from

where its optimal position in the table.
→ On insert, a key takes the slot of another key if the first

key is farther away from its optimal position than the
second key.

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key)

| val [0]A

E

of "Jumps" From First Position

F

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key)

| val [0]A

| val [0]B

E
F

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key)

| val [0]A

| val [0]B

| val [1]C

E
F

A[0] == C[0]

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key)

| val [0]A

| val [0]B

| val [1]C

| val [1]DE
F

C[1] > D[0]

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key)

| val [0]A

| val [0]B

| val [1]C

| val [1]DE

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key)

| val [0]A

| val [0]B

| val [1]C

E | val [2]E

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F | val [2]D

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key)

| val [0]A

| val [0]B

| val [1]C

E | val [2]E

F | val [2]D

| val [1]F

D[2] > F[0]

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

Use multiple hash tables with different hash
function seeds.
→ On insert, check every table and pick anyone that has a

free slot.
→ If no table has a free slot, evict the element from one of

them and then re-hash it find a new location.

Look-ups and deletions are always O(1) because
only one location per hash table is checked.

22

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

A|val

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

Insert B
hash1(B) hash2(B)

A|val

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

Insert B
hash1(B) hash2(B)

B|val
A|val

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

Insert B
hash1(B) hash2(B)

Insert C
hash1(C) hash2(C)

B|val
A|val

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

Insert B
hash1(B) hash2(B)

Insert C
hash1(C) hash2(C)

A|val
C|val

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

Insert B
hash1(B) hash2(B)

Insert C
hash1(C) hash2(C)

hash1(B)

C|val
B|val

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Insert A
hash1(A) hash2(A)

Insert B
hash1(B) hash2(B)

Insert C
hash1(C) hash2(C)

hash1(B)
hash2(A)

A|val

C|val
B|val

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The previous hash tables require the DBMS to
know the number of elements it wants to store.
→ Otherwise it has rebuild the table if it needs to

grow/shrink in size.

Dynamic hash tables resize themselves on demand.
→ Chained Hashing
→ Extendible Hashing
→ Linear Hashing

24

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CHAINED HASHING

Maintain a linked list of buckets for each slot in
the hash table.

Resolve collisions by placing all elements with the
same hash key into the same bucket.
→ To determine whether an element is present, hash to its

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CHAINED HASHING

26

Ø

hash(key)

⋮ ⋮

Buckets

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CHAINED HASHING

26

Ø

hash(key)

⋮ ⋮

Buckets

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

Chained-hashing approach where we split buckets
instead of letting the linked list grow forever.

Multiple slot locations can point to the same
bucket chain.

Reshuffling bucket entries on split and increase the
number of bits to examine.
→ Data movement is localized to just the split chain.

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2

0 1…

0 0…

1 0…

1 1…

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2

0 1…

0 0…

1 0…

1 1…

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Find A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2

0 1…

0 0…

1 0…

1 1…

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Find A

hash(B) = 10111…
Insert B

10111…

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2

0 1…

0 0…

1 0…

1 1…

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Find A

hash(B) = 10111…
Insert B

hash(C) = 10100…
Insert C

10111…

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2

0 1…

0 0…

1 0…

1 1…

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Find A

hash(B) = 10111…
Insert B

hash(C) = 10100…
Insert C

10111…

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2

0 1…

0 0…

1 0…

1 1…

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Find A

hash(B) = 10111…
Insert B

hash(C) = 10100…
Insert C

3

10111…

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2 local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Find A

hash(B) = 10111…
Insert B

hash(C) = 10100…
Insert C

0 10…

0 00…

1 00…

1 10…

0 11…

0 01…

1 01…

1 11…

3

10111…

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Find A

hash(B) = 10111…
Insert B

hash(C) = 10100…
Insert C

0 10…

0 00…

1 00…

1 10…

0 11…

0 01…

1 01…

1 11…

3

10011…
3

10101…

10111…

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTENDIBLE HASHING

29

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Find A

hash(B) = 10111…
Insert B

hash(C) = 10100…
Insert C

0 10…

0 00…

1 00…

1 10…

0 11…

0 01…

1 01…

1 11…

3

10011…
3

10101…

10111…

3
10100…

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

The hash table maintains a pointer that tracks the
next bucket to split.
→ When any bucket overflows, split the bucket at the

pointer location.

Use multiple hashes to find the right bucket for a
given key.

Can use different overflow criterion:
→ Space Utilization
→ Average Length of Overflow Chains

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

5

9

13

6

7

11

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 17

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 1717

20

Overflow!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 1717

4

hash2(key) = key % 2n

20

Overflow!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 1717

4

20hash2(key) = key % 2n

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 17

hash1(20) = 20 % 4 = 0
Find 20

17

4

20hash2(key) = key % 2n

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 17

hash1(20) = 20 % 4 = 0
Find 20

17

4

20hash2(key) = key % 2n

hash2(20) = 20 % 8 = 4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 17

hash1(20) = 20 % 4 = 0
Find 20

17

4

20hash2(key) = key % 2n

hash2(20) = 20 % 8 = 4

hash1(9) = 9 % 4 = 1
Find 9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

31

1

0

2

3

8

hash1(6) = 6 % 4 = 2
Find 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Insert 17

hash1(20) = 20 % 4 = 0
Find 20

17

4

20hash2(key) = key % 2n

hash2(20) = 20 % 8 = 4

hash1(9) = 9 % 4 = 1
Find 9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING

Splitting buckets based on the split pointer will
eventually get to all overflowed buckets.
→ When the pointer reaches the last slot, delete the first

hash function and move back to beginning.

The pointer can also move backwards when
buckets are empty.

32

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING DELETES

33

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING DELETES

33

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING DELETES

33

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING DELETES

33

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING DELETES

33

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING DELETES

33

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LINEAR HASHING DELETES

33

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

hash1(21) = 21 % 4 = 1
Insert 21

Overflow!

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCLUSION

Fast data structures that support O(1) look-ups that
are used all throughout the DBMS internals.
→ Trade-off between speed and flexibility.

Hash tables are usually not what you want to use
for a table index…

34

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

B+Trees
→ aka "The Greatest Data Structure of All Time!"

35

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

