Garnegie Mellon University
e . B
& _

Tree Indexes
—Part |

o Intro to Database Systems Andy Pavlo
> e AP

15-445/15-645 Computer Science
gy & Fall 2019 Carnegie Mellon University

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #1 is due Fri Sept 27t @ 11:59pm

Homework #2 is due Mon Sept 30" @ 11:59pm

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

DATA STRUCTURES

Internal Meta-data
Core Data Storage
Temporary Data Structures

Table Indexes

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

TABLE INDEXES

A table index is a replica of a subset of a table's
attributes that are organized and/or sorted for
efficient access using a subset of those attributes.

The DBMS ensures that the contents of the table
and the index are logically in sync.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

TABLE INDEXES

[t is the DBMS's job to figure out the best
index(es) to use to execute each query.

There is a trade-off on the number of indexes to

create per database.
— Storage Overhead
— Maintenance Overhead

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

TODAY'S AGENDA

B+Tree Overview
Design Decisions
Optimizations

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)

— B+Tree (1973)

— B*Tree (1977?)

— Blink_Tree (1981)

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H

CMU-DB

Efficient Locking for Concurrent Operations
on B-Trees

B-TREE FAMI

PHILIP L. LEHMAN
Carnegie-Melion University
and

S. BING YAO
Purdue University

There is a specific data structure c

Key Words and Phrases: datal i Igorith,
concurrency controls, locking Protocols, correctness, consistency, multiway search trees
CR Categories: 373, 3.74, 432,433, 4.34, 5,24

People also use the term to geners
class of balanced tree data structur

—> B-Tree (1971)

— B+Tree (1973)
—s B*Tree (1977?)
— Blink_Tree (1981)

1. INTRODUCTION

n, ly on Y storage
. (average) search, insertion, and deletion time
for these structures makes them quite g ling for datab, licati

ly and . In
paper, we consider g simple variant of the B-tree (actually of the B*-tree,
Proposed by Wedekind [15)) especially well suited for use in a concurrent database
system.

Methods for concurrent operations on B*-trees have been discussed by Bayer
and Schkolnick [3] and others [6, 12, 13). The solution given in the current paper

Pemi-don!ompywiﬂ!wlfulﬂorplﬂoﬂhilmw'-mhdpmidedhlﬂ'lecopiulrenn(
made or distributed for direct commercial advantage, the ACM COPYTight notice and the title of the
whlicaﬁonlndihda!elmlr,lndmﬁeahﬁvmﬂ\nteopyinghbypcrmuonollheﬂlodlﬁon
for Compuling Machinery. To copy otherwise, or to republish, requires o fee and/or specific
Ppermission,

This research was Supported by the National Science Foundation under Grant MCS76-16604,
Authors’ present addresses: P, [, Lehman, t of Computer Sci , Carnegie-Mellon
University, Pittsburgh, pA 16213; 8. B. Yao, Department of Computer Science and College of Business
and Management, University of Maryland, College Park, MD 20742

©1981 ACM 0062-6915/51/1”)-0650 $00.75

ACM Transactions on Database Systems, Vol. 6, No, 4, December 1981, Pages 650-670,

45/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=319663

{H

B+TREE

A B+Tree is a self-balancing tree data
structure that keeps data sorted and
allows searches, sequential access,

insertions, and deletions in O(log n).

— Generalization of a binary search tree in
that a node can have more than two
children.

— Optimized for systems that read and write
large blocks of data.

CMU-DB

The Ubiquitous B-Tree
DOUGLAS COMER

Computer Science Department, Purdue University, West Lafayette, Indiana 47907

B-tress have become, de facto, & standard mlik organization. File indexes of users,

have all been propased

and “"'Plﬂﬂ!ﬂhd using B-trees This paper reviews B-t lnﬂuwl shows why they have

‘been il Tt discusses the.

B-tree, especially the B*-tree,

contrasting the relatn merts and e of sach .mpl.mn.nun. Tt illustrates a general
‘purpose access method which uses s B-tree.

Keywords and Phrases: B-tree, B*-tree, B*-tree, file organization, index

R Categories: 373374 433 4 34

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
retrieval commands which can be illus-
trated by the following examples:
Sequential: “From our employee file, pre-

pare a list of all employees’
nemes and addresses,” and
Random: “From our employee file, ex-
tract the information about
employee J. Smith".
‘We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
playee. The drawers might be labeled “A-
G,” “H-R,” and “S-Z," while the folders

might be labeled with the employees last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
‘which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
rs. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

Permssion to copy without fee all o part of this material is granted provided tha wos are not made or

distributed for direct commercial advantage, the ACM copyright notice and the i ot e publication and its

dm-wm #ed potios w given that Wymluhyumuunuldnm for Computing Machinery. To
herwise, or to republish, requires n fee and/or specific permission.

copy atherw:
151978 AGM 0010.4852/73,0600-0121 800 76

Computing Surveys, Val 11, No 2, June 197

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://dl.acm.org/citation.cfm?doid=356770.356776

$2CMU-DB

B+TREE PROPERTIES

A B+Tree is an M-way search tree with the

following properties:

— It is perfectly balanced (i.e., every leaf node is at the same
depth).

— Every node other than the root, is at least half-full
M/2-1 < #keys < M-1

— Every inner node with k keys has k+1 non-null children

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

B+TREE EXAMPLE

Inner Node

—

—) =

7

9

13

N N
Sibling Pointers

Leaf Nodes

10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

B+TREE EXAMPLE

.............. Inner Node
<node*>|<key>| :
//fé_,/?k?/ >9
X
““““ 113 . o 1113

“““““““ \«
“““““““““ Svib BT Pointervs Leaf Nodes
<value>|<key>

S=CMU-DB

45/645 (Fa

10

112019

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

NODES

Every B+Tree node is comprised of an array of

key/value pairs.

— The keys are derived from the attributes(s) that the index
is based on.

— The values will differ based on whether the node is
classified as inner nodes or leaf nodes.

The arrays are (usually) kept in sorted key order.

11

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

B+TREE LEAF NODES

12

$2CMU-DB

*
*
3
*
*
3
L3
3
L3
3
*
.
*
3
*
3
‘e
*
o

B+Tree Leaf Node
Prev Next
<= o | k7| V1 |ese kn| Vn | o =p

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

B+TREE LEAF NODES

PagelD

$2CMU-DB

B+Tree Leaf Node

12

Prev

K7

V1

Next

Kn

Vn E—P PagelD

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

B+TREE LEAF NODES

PagelD

$2CMU-DB

12

B+Tree Leaf Node
Prev Next
<= 0 | K1 | B |eee fn n =i PagelD
Key+Value

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

B+TREE LEAF NODES

12

$2CMU-DB

B+Tree Leaf Node
Level Slots Prev Next
o o
Sorted Keys
¥ y K1 | K2 | K3 | K4 | K5 |*** Kn
Values
o o o o o |eee @t

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

12

B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev Next
[- # o) o
5 ¥
Sorted Keys
Y ¥ Y ¥ K1 | K2 | K3 | K4 | K5 |** Kn
ey 4 4 i
o o o o o |eee @t

E‘é CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

13

LEAF NODE VALUES

Microsoft®

Approach #1: Record Ids @) PostgreSQL %SQL Server

— A pointer to the location of the tuple that
the index entry corresponds to.

ORACLE

Approach #2: Tuple Data -
— The actual contents of the tuple is stored ? : SQL Server
in the leaf node. SQthe)

— Secondary indexes have to store the RML-] sqQL ORACLE:

record id as their values.

@CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys +

values in all nodes in the tree.
— More space efficient since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

14

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

Source: Chris Re

$2CMU-DB

B+TREE INSERT

Find correct leaf node L.
Put data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

15

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

$2CMU-DB

B+TREE VISUALIZATION

https://cmudb.io/btree

Source: David Gales (Univ. of San Francisco)

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://cmudb.io/btree
https://www.cs.usfca.edu/~galles/

Source: Chris Re

$2CMU-DB

B+TREE DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only M/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

17

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

$2CMU-DB

B+TREES IN PRACTICE

Typical Fill-Factor: 67%.

Typical Capacities:
— Height 4: 1334 = 312,900,721 entries
— Height 3: 1333 = 2,406,104 entries

Pages per level:

— Level 1 = 1 page 8 KB
— Level 2= 134 pages 1 MB
— Level 3 = 17,956 pages = 140 MB

18

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

19

CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
— If a table doesn’t contain a primary key, the DBMS will
automatically make a hidden row id primary key.

Other DBMSs cannot use them at all.

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

20

SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.

Example: Index on <a, b, c>
— Supported: (a=5 AND b=3)
— Supported: (b=3).

Not all DBMSs support this.

For hash index, we must have all attributes in
search key.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SELECTION CONDITIONS

Find Key=(A,B)

$2CMU-DB

—

o >
IA IA

A
C

B,B

C,C

[

AAl A,

B

A,C

B,A

B,B

B,C

C,C

c,D|

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SELECTION CONDITIONS
Find Key=(A,B)

Find Key=(A,*) A< A
A,C||B,B||C,C
AAl[A,B A,c|[B,A B,B| [B,C ,

*

$2CMU-DB

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*) A< A

$2CMU-DB

B,B

C,C

[

A,C
%
il
A,Al |A,B A,Cl|B,A

B,B

B,C

C,C

c,D|

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)
Find Key=(*,B)

—

A’C ?

‘//

\

A,A

A,B

A,C

B,A

B,B

B,C

C,C

c,D|

$2CMU-DB

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

*B < C,C
Find Key=(*,B) A,c||B,Bl|c,c
AA [A,B A, [B,A B,B| [B,C ¢,c||c,0|

$2CMU-DB

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)
Find Key=(*,B)

—

* B < C,C

A,C

B,B

C,C

~ |

\

A,A

A,B

A,C

B,A

B,B

B,C

C,C

c,D|

$2CMU-DB

*
B

*

o >

*

*
B

B
B

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

22

B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable Length Keys
Non-Unique Indexes
Intra-Node Search

E‘é CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2185842

23

NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

MERGE THRESHOLD

Some DBMSs do not always merge nodes when it

is half full.

Delaying a merge operation may reduce the
amount of reorganization.

[t may also be better to just let underflows to exist
and then periodically rebuild entire tree.

24

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

25

VARIABLE LENGTH KEYS

Approach #1: Pointers
— Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value
list within the node.

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

KEY MAP / INDIRECTION

$2CMU-DB

*
*
3
*
*
3
L3
3
03
3
*
.
*
3
*
3
*
‘e
g3

B+Tree Leaf Node
" Level Slots Prev Next
L o o
Sorted Key Map
o o o o
Key+Values
€ | Prashanth V4
Lin | V2 | Andy V7 | Obama | V3

26

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

KEY MAP / INDIRECTION

$2CMU-DB

26

B+Tree Leaf Node
’ Level Slots Prev Next
o o
(L
Sorted Key Map
y ¥ o]

Prashanth V4
Lin | V2 | Andy V7 | Obama | V3

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

KEY MAP / INDIRECTION

$2CMU-DB

*
*
3
*
*
3
L3
3
03
3
*
.
*
3
*
3
*
‘e
g3

B+Tree Leaf Node
" Level Slots Prev Next
L o o
Sorted Key Map
A-=[L-m[0-r[P-m
Key+Values
€ ||Pfashanth V4
Lin | V2 ||Apdy V7 ||Opama | V3

26

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

27

NON-UNIQUE INDEXES

Approach #1: Duplicate Keys

— Use the same leaf node layout but store duplicate keys
multiple times.

Approach #2: Value Lists

— Store each key only once and maintain a linked list of
unique values.

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

28

NON-UNIQUE: DUPLICATE KEYS

B+Tree Leaf Node
‘| Level Slots Prev Next
| # # o o)
g !
Sorted Keys
—— e K1 | K1 | K1 | K2 | K2 |[see Kn
......... Values
......... o | o | o | o | o |eee m

E‘é CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

28

NON-UNIQUE: DUPLICATE KEYS

B+Tree Leaf Node
‘| Level Slots Prev Next
| # # o o
g !
Sorted Keys
y y v y K2 | K2 |°*°¢ Kn

*
*
*
*
g3
3
g3
3
*
3
*
3
*
3
*
3
*
‘e
g3

E‘é CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

29

NON-UNIQUE: VALUE LISTS

B+Tree Leaf Node
‘| Level Slots Prev Next
| # # o o)
g ¥
Sorted Keys
——" —— K1 | K2| K3 | k4| K5 |s®e Kn
......... Values
000000000 n n n
o | n
[)
[)
[)

$2CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

INTRA-NODE SEARCH
Find Key=8

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$2CMU-DB

30

6

7

8

91|10

*

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$2CMU-DB

30

Find Key=8

6|7 8] 9]l

6|7 8] 9]0
CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$2CMU-DB

30

Find Key=8
6|7 8] 9]l
67 8] 9]l

*

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$2CMU-DB

30

Find Key=8
6|7 8] 9]l
6|7 8] 9]l

*

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

30

INTRA-NODE SEARCH

Find Key=8
Approach #1: Linear s1lsllell7!l8!llagllie
— Scan node keys from beginning to end. f
Approach #2: Binary
— Jump to middle key, pivot left/right 4(15|[6]/7]/8]|]9]|10
depending on comparison. '

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

30

INTRA-NODE SEARCH

Find Key=8

Approach #1: Linear s1llsllell7llsllallie
— Scan node keys from beginning to end. '
Approach #2: Binary
— Jump to middle key, pivot left/right 4(15|[6]l7]/8]|]9]|10

depending on comparison. '
Approach #3: Interpolation Offset: 7-(10-8)=5
— Approximate location of desired key based

. 4 115]|16]|]|7 91110
on known distribution of keys.

_ B

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

31

OPTIMIZATIONS

Prefix Compression
Suffix Truncation
Bulk Insert

Pointer Swizzling

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store

only unique suffix for each key.
— Many variations.

$2CMU-DB

32

robbed | [robbing|| robot
Prefix: rob
bed [[bing|| ot

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

33

SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

[ebccetenisi] [moparstav]

Store a minimum prefix that is needed
to correctly route probes into the
index.

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

$2CMU-DB

33

|abc

1mn|

|

~—

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

34

BULK INSERT

The fastest/best way to build a
B+Tree is to first sort the keys and Keys: 3,7,9,13,6, 1
then build the index from the bottom Sorted Keys: 1, 3, 6, 7, 9, 13

up.

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

BULK INSERT

The fastest/best way to build a
B+Tree is to first sort the keys and
then build the index from the bottom

up.

34

Keys: 3,7,9, 13,6, 1
Sorted Keys: 1,3,6,7,9, 13

6|9

—

=

$2CMU-DB

13

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

35

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

$2CMU-DB

Find Key>3
6|9

S

3

6 || 7

Buffer Pool

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

35

POINTER SWIZZLING

Find Key>3
Nodes use page ids to reference other 6|9
nodes in the index. The DBMS must sPage #2
get the memory location from the :
page table during traversal. T3 15
[f a page is pinned in the buffer pool, % Page#2 > <Page*>

then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

Header Header Header

2 | 3

Buffer POOl«-

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

35

POINTER SWIZZLING

Find Key>3
Nodes use page ids to reference other 6|9

nodes in the index. The DBMS must Page #2
get the memory location from the “Page #

page table during traversal. IIII-I-I.IBI-I-I

C : : Page #2 » <Page*>
[f a page is pinned in the l.)uffer pool, Paneha e agers
then we can store raw pointers

instead of page ids. This avoids ", .d |d|

address lookups from the page table.
E‘ECMU'DB CMU 15-445/645 (Fall 2019)

Buffer PooOl -

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

35

POINTER SWIZZLING

Find Key>3
Nodes use page ids to reference other 6|9
nodes in the index. The DBMS must <Page™
get the memory location from the <Page*3

page table during traversal. |n||-|.|n||-|

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

Buffer Pool

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

36

CONCLUSION

The venerable B+Tree is always a good choice for
your DBMS.

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

37

NEXT CLASS

More B+Trees
Tries / Radix Trees
Inverted Indexes

E‘%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

