
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

13 Query Execution
Part II

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Homework #3 is due Today @ 11:59pm

Mid-Term Exam is Wed Oct 16th @ 12:00pm

Project #2 is due Sun Oct 20th @ 11:59pm

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY EXECUTION

We discussed last class how to
compose operators together to
execute a query plan.

We assumed that the queries execute
with a single worker (e.g., thread).

We now need to talk about how to
execute with multiple workers…

3

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WHY CARE ABOUT PARALLEL EXECUTION?

Increased performance.
→ Throughput
→ Latency

Increased responsiveness and availability.

Potentially lower total cost of ownership (TCO).

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PARALLEL VS. DISTRIBUTED

Database is spread out across multiple resources
to improve different aspects of the DBMS.

Appears as a single database instance to the
application.
→ SQL query for a single-resource DBMS should generate

same result on a parallel or distributed DBMS.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PARALLEL VS. DISTRIBUTED

Parallel DBMSs:
→ Resources are physically close to each other.
→ Resources communicate with high-speed interconnect.
→ Communication is assumed to cheap and reliable.

Distributed DBMSs:
→ Resources can be far from each other.
→ Resources communicate using slow(er) interconnect.
→ Communication cost and problems cannot be ignored.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TODAY'S AGENDA

Process Models

Execution Parallelism

I/O Parallelism

7

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PROCESS MODEL

A DBMS’s process model defines how the system
is architected to support concurrent requests from
a multi-user application.

A worker is the DBMS component that is
responsible for executing tasks on behalf of the
client and returning the results.

8

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PROCESS MODELS

Approach #1: Process per DBMS Worker

Approach #2: Process Pool

Approach #3: Thread per DBMS Worker

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ A process crash doesn’t take down entire system.
→ Examples: IBM DB2, Postgres, Oracle

10

Dispatcher Worker

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PROCESS POOL

A worker uses any process that is free in a pool
→ Still relies on OS scheduler and shared memory.
→ Bad for CPU cache locality.
→ Examples: IBM DB2, Postgres (2015)

11

Worker PoolDispatcher

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)

12

Worker Threads

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PROCESS MODELS

Using a multi-threaded architecture has several
advantages:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

Andy is not aware of any new DBMS from last 10
years that doesn’t use threads unless they are
Postgres forks.

13

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCHEDULING

For each query plan, the DBMS decides where,
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.

14

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTER- VS. INTRA-QUERY PARALLELISM

Inter-Query: Different queries are executed
concurrently.
→ Increases throughput & reduces latency.

Intra-Query: Execute the operations of a single
query in parallel.
→ Decreases latency for long-running queries.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.

If queries are read-only, then this requires little
coordination between queries.

If multiple queries are updating the database at the
same time, then this is hard to do correctly…

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#oct-23-2019

CMU 15-445/645 (Fall 2019)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Think of organization of operators in terms of a
producer/consumer paradigm.

There are parallel algorithms for every relational
operator.
→ Can either have multiple threads access centralized data

structures or use partitioning to divide work up.

17

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

18

h1
⋮

HTR

h1

R(id,name)

⋮

HTS
0
1
2

max

S(id,value,cdate)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

18

h1
⋮

HTR

h1

R(id,name)

⋮

HTS
0
1
2

max

S(id,value,cdate)1

2

3

n

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

19

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Decompose operators into independent fragments that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce results from children
operators.

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-OPERATOR PARALLELISM

21

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-OPERATOR PARALLELISM

21

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

Fragment

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-OPERATOR PARALLELISM

21

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

Next

Next

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-OPERATOR PARALLELISM

21

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

Next

Next

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-OPERATOR PARALLELISM

21

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTRA-OPERATOR PARALLELISM

21

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXCHANGE OPERATOR

Exchange Type #1 – Gather
→ Combine the results from multiple workers into a single

output stream.
→ Query plan root must always be a gather exchange.

Exchange Type #2 – Repartition
→ Reorganize multiple input streams across multiple output

streams.

Exchange Type #3 – Distribute
→ Split a single input stream into multiple output streams.

22

Source: Craig Freedman

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3
1 2 3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3
1 2 3

s s s

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3

Build HT Build HT Build HT

1 2 3

s s s

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

s s s

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3

Build HT Build HT Build HT

B1 B2
1 2 3 4 5

Exchange

s s s

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3

Build HT Build HT Build HT

B1 B2

Partition Partition

1 2 3 4 5

Exchange Exchange

s ss s s

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3

Build HT Build HT Build HT

B1 B2

Partition Partition

1 2 3 4 5

⨝
Exchange Exchange

s ss s s

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

A B

⨝
s

p

s

INTRA-OPERATOR PARALLELISM

23

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

A2A1 A3

Build HT Build HT Build HT

B1 B2

Partition Partition

1 2 3 4 5

1 2 3 4

Probe HT Probe HT Probe HT Probe HT

⨝
Exchange Exchange

Exchange

s ss s s

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from

one stage to the next without materialization.

Also called pipelined parallelism.

24

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTER-OPERATOR PARALLELISM

1 ⨝
for r1 ∊ outer:
for r2 ∊ inner:
emit(r1⨝r2)A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTER-OPERATOR PARALLELISM

1 ⨝
for r1 ∊ outer:
for r2 ∊ inner:
emit(r1⨝r2)

2 p for r ∊ incoming:
emit(pr)

A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INTER-OPERATOR PARALLELISM

1 ⨝
for r1 ∊ outer:
for r2 ∊ inner:
emit(r1⨝r2)

2 p for r ∊ incoming:
emit(pr)

A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUSHY PARALLELISM

Approach #3: Bushy Parallelism
→ Extension of inter-operator parallelism

where workers execute multiple operators
from different segments of a query plan at
the same time.

→ Still need exchange operators to combine
intermediate results from segments.

26

SELECT *
FROM A JOIN B JOIN C JOIN D A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

3 4

1 2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

Using additional processes/threads to execute
queries in parallel won't help if the disk is always
the main bottleneck.
→ Can make things worse if each worker is reading

different segments of disk.

27

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

I /O PARALLELISM

Split the DBMS installation across multiple storage
devices.
→ Multiple Disks per Database
→ One Database per Disk
→ One Relation per Disk
→ Split Relation across Multiple Disks

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MULTI-DISK PARALLELISM

Configure OS/hardware to store the
DBMS's files across multiple storage
devices.
→ Storage Appliances
→ RAID Configuration

This is transparent to the DBMS.

29

page1

page4

page2

page5

page3

page6

RAID 0 (Stripping)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MULTI-DISK PARALLELISM

Configure OS/hardware to store the
DBMS's files across multiple storage
devices.
→ Storage Appliances
→ RAID Configuration

This is transparent to the DBMS.

29

page2

page1

page2

page1

page2

page1

RAID 1 (Mirroring)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DATABASE PARTITIONING

Some DBMSs allow you specify the disk location
of each individual database.
→ The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the
DBMS stores each database in a separate directory.
→ The log file might be shared though

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PARTITIONING

Split single logical table into disjoint physical
segments that are stored/managed separately.

Ideally partitioning is transparent to the
application.
→ The application accesses logical tables and does not care

how things are stored.
→ Not always true in distributed DBMSs.

31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERTICAL PARTITIONING

Store a table’s attributes in a separate
location (e.g., file, disk volume).

Have to store tuple information to
reconstruct the original record.

32

Tuple#1

Tuple#2

Tuple#3

Tuple#4

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr4

attr4

attr4

attr4

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERTICAL PARTITIONING

Store a table’s attributes in a separate
location (e.g., file, disk volume).

Have to store tuple information to
reconstruct the original record.

32

Tuple#1

Tuple#2

Tuple#3

Tuple#4

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr4

attr4

attr4

attr4

Tuple#1

Tuple#2

Tuple#3

Tuple#4

Partition #1 Partition #2

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HORIZONTAL PARTITIONING

Divide the tuples of a table up into
disjoint segments based on some
partitioning key.
→ Hash Partitioning
→ Range Partitioning
→ Predicate Partitioning

33

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#1

Tuple#2

attr4

attr4

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#3

Tuple#4

attr4

attr4

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HORIZONTAL PARTITIONING

Divide the tuples of a table up into
disjoint segments based on some
partitioning key.
→ Hash Partitioning
→ Range Partitioning
→ Predicate Partitioning

33

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#1

Tuple#2

attr4

attr4

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#3

Tuple#4

attr4

attr4

Partition #1 Partition #2

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCLUSION

Parallel execution is important.

(Almost) every DBMS support this.

This is really hard to get right.
→ Coordination Overhead
→ Scheduling
→ Concurrency Issues
→ Resource Contention

34

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MIDTERM EXAM

Who: You

What: Midterm Exam

When: Wed Oct 16th @ 12:00pm ‐ 1:20pm

Where: MM 103

Why: https://youtu.be/GHPB1eCROSA

Covers up to Query Execution II (inclusive).
→ Please email Andy if you need special accommodations.
→ https://15445.courses.cs.cmu.edu/fall2019/midterm-

guide.html

35

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://youtu.be/GHPB1eCROSA
https://15445.courses.cs.cmu.edu/fall2019/midterm-guide.html

CMU 15-445/645 (Fall 2019)

MIDTERM EXAM

What to bring:
→ CMU ID
→ Calculator
→ One 8.5x11" page of handwritten notes (double-sided)

What not to bring:
→ Live animals
→ Your wet laundry
→ Votive Candles (aka "Jennifer Lopez" Candles)

36

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

REL ATIONAL MODEL

Integrity Constraints

Relation Algebra

37

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SQL

Basic operations:
→ SELECT / INSERT / UPDATE / DELETE
→ WHERE predicates
→ Output control

More complex operations:
→ Joins
→ Aggregates
→ Common Table Expressions

38

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STORAGE

Buffer Management Policies
→ LRU / MRU / CLOCK

On-Disk File Organization
→ Heaps
→ Linked Lists

Page Layout
→ Slotted Pages
→ Log-Structured

39

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HASHING

Static Hashing
→ Linear Probing
→ Robin Hood
→ Cuckoo Hashing

Dynamic Hashing
→ Extendible Hashing
→ Linear Hashing

40

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TREE INDEXES

B+Tree
→ Insertions / Deletions
→ Splits / Merges
→ Difference with B-Tree
→ Latch Crabbing / Coupling

Radix Trees

41

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SORTING

Two-way External Merge Sort

General External Merge Sort

Cost to sort different data sets with different
number of buffers.

42

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

JOINS

Nested Loop Variants

Sort-Merge

Hash

Execution costs under different conditions.

43

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY PROCESSING

Processing Models
→ Advantages / Disadvantages

Parallel Execution
→ Inter- vs. Intra-Operator Parallelism

44

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

Query Planning & Optimization

45

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

