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ADMINISTRIVIA

Project #3 is due Sun Nov 17" @ 11:59pm.

Homework #4 will be released next week.
It is due Wed Nov 13" @ 11:59pm.
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COURSE STATUS

A DBMS's concurrency control and Query Planning
recovery components permeate

throughout the design of its entire Operator Execution
architecture.

Access Methods

Buffer Pool Manager

Disk Manager
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COURSE STATUS

Query Planning
A DBMS's concurrency control and

Concurrency Control

recovery components permeate .
throughout the design of its entire Operator Execution
architecture.
Access Methods

Recovery

Buffer Pool Manager

_—

Disk Manager
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MOTIVATION

We both change the same record in a « Lost Updates
table at the same time. Concurrency Control
How to avoid race condition?

You transfer $100 between bank « Durab”ity

accounts but there is a power failure. Recovery
W hat is the correct database state?
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CONCURRENCY CONTROL & RECOVERY

Valuable properties of DBMSs.

Based on concept of transactions with ACID
properties.

Let’s talk about transactions...
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TRANSACTIONS

A transaction is the execution of a sequence of
one or more operations (e.g., SQL queries) on a
database to perform some higher-level function.

[t is the basic unit of change in a DBMS:
— Partial transactions are not allowed!
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TRANSACTION EXAMPLE

Move $100 from Andy bank account to his
promotor's account.

Transaction:

— Check whether Andy has $100.
— Deduct $100 from his account.
— Add $100 to his promotor account.
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STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.

— One and only one txn can be running at the same time in
the DBMS.

Before a txn starts, copy the entire database to a

new file and make all changes to that file.

— If the txn completes successfully, overwrite the original
file with the new one.

— If the txn fails, just remove the dirty copy.
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PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:
— Correctness
— Fairness
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TRANSACTIONS

Hard to ensure correctness...

— What happens if Andy only has $100 and tries to pay off
two promotors at the same time?

Hard to execute quickly...

— What happens if Andy tries to pay off his gambling debts
at the exact same time?
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PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving is valid.
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DEFINITIONS

A txn may carry out many operations on the data
retrieved from the database

However, the DBMS is only concerned about what

data is read/written from/to the database.

— Changes to the "outside world" are beyond the scope of
the DBMS.
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FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g.,
A B,C,...).

— We do not need to define what these objects are now.

Transaction: A sequence of read and write
operations ( R(A), W(B), ...)

— DBMS'’s abstract view of a user program

13
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TRANSACTIONS IN SQL

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:

— [f commit, the DBMS either saves all the txn's changes
or aborts it.

— If abort, all changes are undone so that it’s like as if the
txn never executed at all.

Abort can be either self-inflicted or caused by the
DBMS.
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CORRECTNESS CRITERIA: ACID

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

Durability: If a txn commiits, its effects persist.
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CORRECTNESS CRITERIA: ACID

Atomicity: “all or nothing”
Consistency: “it looks correct to me”
Isolation: “as if alone”

Durability: “survive failures”
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TODAY'S AGENDA

Atomicity
Consistency
[solation
Durability
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ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:

— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From user’s point of view: txn always either executes all
its actions, or executes no actions at all.

18
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ATOMICITY OF TRANSACTIONS

Scenario #l:
— We take $100 out of Andy's account but then the DBMS
aborts the txn before we transfer it.

Scenario #2:
— We take $100 out of Andy’s account but then there is a
power failure before we transfer it.

W hat should be the correct state of Andy's account
after both txns abort?

19
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MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.

— Audit Trail
— Efficiency Reasons
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MECHANISMS FOR ENSURING ATOMICITY
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Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page
made visible to others.

— Originally from System R.

Few systems do this:
— CouchDB
— LMDB (OpenLDAP)
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MECHANISMS FOR ENSURING ATOMICITY
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CONSISTENCY

The "world" represented by the database is
logically correct. All questions asked about the data
are given logically correct answers.

Database Consistency
Transaction Consistency
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DATABASE CONSISTENCY

The database accurately models the real world and
follows integrity constraints.

Transactions in the future see the effects of

transactions committed in the past inside of the
database.
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TRANSACTION CONSISTENCY

If the database is consistent before the transaction
starts (running alone), it will also be consistent
after.

Transaction consistency is the application’s

responsibility.
— We won't discuss this further...
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ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

was running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

25
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MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of
operations from multiple transactions.

Two categories of protocols:

— Pessimistic: Don't let problems arise in the first place.

— Optimistic: Assume conflicts are rare, deal with them
after they happen.
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EXAMPLE

Assume at first A and B each have $1000.
T, transfers $100 from A’s account to B’s
T, credits both accounts with 6% interest.

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT
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EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T.,?

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT
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EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T.,?

Many! But A+B should be:
— $2000%1.06=$2120

There is no guarantee that T, will execute before
T, or vice-versa, if both are submitted together.
But the net effect must be equivalent to these two
transactions running serially in some order.
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EXAMPLE

Legal outcomes:
— A=954,B=1166 » A+B=$2120
— A=960, B=1160 » A+B=$2120

The outcome depends on whether T, executes
before T, or vice versa.
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SERIAL EXECUTION EXAMPLE

Schedule Schedule
l’ -------------- R l’ -------------- R
| T1 T2 | | T1 T2 |
| | BEGIN : ! BEGIN :
1| A=A-100 i i A=A%1.06 | I
| | B=B+100 : : B=B*1.06 | |
1 | COMMIT 1o COMMIT I
: BEGIN : — : BEGIN :
I A=A%1.06 | I 1| A=A-100 I
: B=B*1.06 : : B=B+100 :
- COMMIT I 1 | COMMIT I
I I I I
I I I I
: ( A=954, B=1166 ; : : »( A=960, B=1160 ) :
\ / \ /

AN N BN S BN BN BN BN B S .

A+B=%$2120
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INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.

— Slow disk/network I/O.
— Multi-core CPUs.

When one txn stalls because of a resource (e.g.,

page fault), another txn can continue executing
and make forward progress.
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INTERLEAVING EXAMPLE (GOOD)

A=954, B=1166 A=960, B=1160

Schedule Schedule

l’ -------------- ™, l’ -------------- ™,
i T, T, : i T T, :
I | BEGIN . | | BEGIN |
| | A=A-100 ! 1| A=A-100 :
I iEii';‘ o |1 1 | B=B+100 |
i =A%1. - |

: B=B+100 : — : COMMIT BEGIN :
1 | COMMIT i 1 A=A%1.06 | |
: B=B*1.06 : : B=Bx1.06 :
" COMMIT - " COMMIT :
i i I i
i i I i
i i I i
I i I i
\ J \ V4

CMU'DB CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

INTERLEAVING EXAMPLE (GOOD)

----

’----

-

Schedule Schedule
-------------- \‘ lf--------------
BEGIN I : BEGIN
A=A-100 : : A=A-100

nast 05 | | )| o520
- ° ] I
B=B+100 : — : COMMIT BEGIN
C I I A=A%x1.06
(:B=B*1.@6> : : B=B*1.06
cO 1 I COMMIT
I I
I I
( A=954, B=1166 ; : : »( A=960, B=1160 )
L ¢ L L L B ’, \— -------------
A+B=%$2120

\---------’

33
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INTERLEAVING EXAMPLE (BAD)

A=954, B=1060

Schedule
|l T, T, H
| | BEGIN :
1| A=A-100 |
: BEGIN l A=954, B=1166
| 55106 || 5
: COMMIT | | or
| | B=B+100 ! A=960, B=1160
| commrT .
1 1
1 1
1 1
| |
\ /

AN N BN SN BN SN BN BN BN S S .

AThe bank is missing $106!
A+B=$2014
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INTERLEAVING EXAMPLE (BAD)

’---------

Schedule DBMS View
-------------- \ o e e
T1 T2 | |l T1 Tz
BEGIN : || BEGIN
A=A-100 =——— - :J R(A)
BEGIN ; = W(A)
A=A*1.06 : BEGIN
B=B*1 .06 ~~ul R(A)
COMMIT I W(A)
B=B+100 : i R(B)
COMMIT \ I I W(B)
COMMIT

A=954, B=1060

|
NR@
| W(B)

COMMIT

AuN I N S BN BN BN BN BN SN BN BN BN BN B e e e

35
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CORRECTNESS

How do we judge whether a schedule is correct?

If the schedule is equivalent to some serial
execution.
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FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

— A schedule that does not interleave the actions of
different transactions.

Equivalent Schedules

— For any database state, the effect of executing the first
schedule is identical to the effect of executing the second
schedule.

— Doesn't matter what the arithmetic operations are!

E-g CMU'DB CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

38

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

[f each transaction preserves consistency, every
serializable schedule preserves consistency.
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FORMAL PROPERTIES OF SCHEDULES

Serializability is a less intuitive notion of

correctness compared to txn initiation time or
commit order, but it provides the DBMS with
additional flexibility in scheduling operations.

More flexibility means better parallelism.
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CONFLICTING OPERATIONS

We need a formal notion of equivalence that can
be implemented efficiently based on the notion of
"conflicting" operations

Two operations conflict if:

— They are by different transactions,

— They are on the same object and at least one of them is a
write.
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INTERLEAVED EXECUTION ANOMALIES

Read-Write Conflicts (R-W)
Write-Read Conflicts (W-R)
Write-Write Conflicts (W-W)

41
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READ-WRITE CONFLICTS

Unrepeatable Reads
e e e e N
LT T, )
1 [ BEGIN :
$10<j:|| R(A) I
.. I BEGIN :
I R(A)
0@51 : W(A)
i COMMIT I
$19 4= R(A) !
1 | COMMIT i
1 ]
S P = = = ™ ) s e ) = s e = »

£=CMU-DB

$10
$19

42
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WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

" -------------- \\
| T1 Tz |
1 [ BEGIN :
$10<=3aR(A) i
$12=p} W(A) w| BEGIN !
1| oame® BR(A)
| Q|
1| _¢7F% | commIT i
(ABORT ) !
| 1
| 1
S — ¥

$12
$14

43
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WRITE-WRITE CONFLICTS

Overwriting Uncommitted Data

Rttty N
| T1 Tz |
| [ BEGIN :

$LO=2) W(A) |
\ BEGIN !

1

1

I W(A)

: 0@ W(B)
i /COMMIT

Bieben:p W(B)

1 | COMMIT

L T L F

£=CMU-DB

$19
Andy

44
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FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand

what it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:
— Conflict Serializabilityﬁ Most DBMSs try to support this.
— View Serializability

No DBMS can do this.
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CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:

— They involve the same actions of the same transactions,
and

— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
— S is conflict equivalent to some serial schedule.
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CONFLICT SERIALIZABILITY INTUITION

Schedule S is conflict serializable if you are able to
transform S into a serial schedule by swapping
consecutive non-conflicting operations of different

transactions.
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CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
: R(A) :

W(A)
Ry e |
: W(B) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
NS O -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
I R(A) i
| | R(®) !
1 W(A) |
: W(B) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
NS O -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
" |

R i
1 W(A) |
: W(B) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
D [ o e e e e e e[ s T -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| WCA) :
1| R(B) i
: R(A) !
1 W(A) |
: W(B) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
NS O -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
e ™,
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| WCA) :
1| R(B) I
: R(A) !
I W(A)
| W(B)/ |
1 | COMMIT :
: R(B) !
I W(B) "
- COMMIT i
! ]
D [ o e e e e e e[ s T -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
AR TR T o= R
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| WCA) :
1 | R(B) i
: R(A) !
1| W(B) i
: W(A) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
NS O -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| WCA) :
: R(B) :

R(A)
oy e |
: W(A) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
NS O -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| WCA) :
1| R(B) i
1 W) !
1 RCA) |
: W(A) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
NS O -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| WCA) :
1| R(B) i
1 W) !
1 RCA) |
: W(A) I
I | COMMIT :
: R(B) !
i W(B) -
: COMMIT i
! ]
NS O -

Serial Schedule

A N
1 T1 Tz }
| | BEGIN !
1 | R(A) I
1| WeA) !
1 | R(B) I
: W(B) I
| | COMMIT | BEGIN :
: R(A) I
I W(A) :
: R(B) i
I W(B) :
i COMMIT I
\ J
AN e e e e e e e e e e e e e e -
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CONFLICT SERIALIZABILITY INTUITION

Schedule
e e o
T, T,
BEGIN BEGIN

R(A)
R(A)
W(A)
WA e

—---------

COMMIT P\ COMMIT

\_________________’

Serial Schedule

e — \\
1 T1 Tz 1
| | BEGIN !
1 | R(A) 1
BRI !
I | COMMIT BEGIN I
: R(A) !
| W(A) |
: COMMIT I
- |
I I
I I
I I
I I
‘\ ______________ I
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SERIALIZABILITY

Swapping operations is easy when there are only
two txns in the schedule. It's cumbersome when
there are many txns.

Are there any faster algorithms to figure this out
other than transposing operations?

50
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DEPENDENCY GRAPHS

Dependency Graph

One node per txn.
Edge from T; to T if:

— An operation 0; of T, conflicts with an
operation O; of T, and
—> 0, appears earlier in the schedule than O;.

g

Also known as a precedence graph.

A schedule is conflict serializable iff its
dependency graph is acyclic.
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EXAMPLE #1
Schedule Dependency Graph

o I T I S ——————— ~  pemmmmmEmEmmmmEmmmmm—— N
{ L} .’ A i
I | BEGIN BEGIN : : ]
{E8 i Wi
1| W(A
| 0 : : :
I W(A) : : l
: R(B) I e e ),
I W(B) :
i COMMIT I
1| R(B) !
1| W(B) i
\ [ COMMIT i

]
I e S e e e e e e e e e e e -
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EXAMPLE #1
Schedule Dependency Graph

ommmm__—_—_—_——_—————— .~  j mmmmEmEmsmEmmmm—mm—_————— N
i T T, : A |
I | BEGIN BEGIN : : :
(S . O O
1| WCA
: oo | R(A) i i :
I W(A) |
l OQQ R(B) ] \____ B ).
: W(B) ! S
: o (B COMMIT : The cycle in the graph
: WEB% i reveals the problem.
| comrt : The output of T, depends
S ! L o T,, and vice-versa. D
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Schedule
e e e e
|l T1 T2 T3
| | BEGIN
1| R(A)

: W(A) BEGIN
i R(A)

! W(A)

" BEGIN | COMMIT
i R(B)

: W(B)

1 | R(B) COMMIT

1| W(B)

| COMMIT

54

EXAMPLE #2 — THREESOME

\---------—

Dependency Graph

\-----I
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Schedule
e
|l T1 T2 T3
| | BEGIN
1| R(A)

: W(A) BEGIN
i R(A)
: W(A)
- BEGIN | COMMIT
: R(B)
W(B)
: R(B)‘V COMMIT
1| W(B)
| COMMIT

54

EXAMPLE #2 — THREESOME

\---------—

Dependency Graph

’-----R
\-----I

I
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Schedule
e e o
|l T, T, T,
| | BEGIN
: REA%

W(A BEGIN
I W(A)
: BEGIN | COMMIT
: R(B)

W(B)

| R(B)‘V COMMIT
1| W(B)
X COMMIT

54

EXAMPLE #2 — THREESOME

\---------—

Dependency Graph

’-----R

\-----I

I
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Schedule
e e o
|l T, T, T,
| | BEGIN
: REA%

W(A BEGIN
: \R(A)
I W(A)
: BEGIN | COMMIT
: R(B)

W(B)

: R(B)l COMMIT
1| W(B)
X COMMIT

54

EXAMPLE #2 — THREESOME

\---------—

Dependency Graph

’-----R

\-----I

I

Is this equivalent to a serial execution?
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Schedule
e e o
|l T, T, T,
| | BEGIN
: REA%

W(A BEGIN
: \R(A)
I W(A)
: BEGIN | COMMIT
: R(B)

W(B)

| R(B)‘v COMMIT
: W(B)
X COMMIT

EXAMPLE #2 — THREESOME

\---------—
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Dependency Graph

’-----R

I

Is this equivalent to a serial execution?

Yes (T,, T, T5)

— Notice that T, should go after T,

although it starts before it!
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EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule
AR Rt
: T, T, I
I | BEGIN BEGIN :
I I
KA = A1) :
I I
1
. R(A) :
: sum = A |
i R(B) :
I sum += B I
: ECHO sum :
1 | R(B) COMMIT I
: B = B+10 :
1| W(B) 1
I | COMMIT I
! !
S [ o e T e e e [ e T -

Dependency Graph

D, )

’-----R
\-----I
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EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I ! I
1| A=A-10 : : l
| wew | : ‘
I |
| GeD) S :
: sum += B :

: ECHO sum :
1| R(B) COMMIT I
1B =B+10 I
|| W(B) l
1| COMMIT I
! !
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EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I ! I
1| A=A-10 : : l
Ll wea) i i :
. R(A) : : l
: sum = A I (Y )
I R(B) :

I = I
: C ECHO sum :
1| R(B) $ I
1B =B+10 I
1| W(B) l
1| COMMIT I
\ ]

§-§ CMU-DB N e e e - CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

55

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- ot T T \
: T, P I I A :
I | BEGIN BEGIN : : |
1| RCA) l ' I
I [A=A-10 : : |
I w(a) I I -
: ) : ! ]
: sum = A I (Y )
I R(B) :
| sum += B 1
: ECHO sum :
1| R(B) COMMIT I
1B =B+10 I
1| W(B) l
1| COMMIT I
! !
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EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule
AR Rt
: T, T, I
I | BEGIN BEGIN :
1| RCA) l
1| A=A-10 :
I w(a) I
e !
: Q sum = A I
1| oWe |[R(B) :
I sum += B I
: ECHO sum :
1 | R(B) COMMIT I
: B = pf10 :
1| W(B) 1
1| COMMIT i
! !
N I S e e e e e e e e -

’-----R

Dependency Graph
----------------- \
A :
|
|
G
|
|
|
B l
AN EEN EEN BN EEN EEN BEN BEN BEN NN BEN BEN BEN BN EEE BN I
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EXAMPLE #3 — INCONSISTENT ANALYSIS

—----------~

Schedule
T, T,
BEGIN BEGIN
R(A)
A = A-10
W(A)
NR(A)
Q sum = A
oWy | R(B)
sum += B
ECHO sum
R(B) COMMIT
B = 10
W(B)
COMMIT

-----------’

Dependency Graph
{ \
i A :
! i
! i
I i
I i
! I
! i
: i
‘ --------B -------- II

Is it possible to modify only the
application logic so that schedule
produces a "correct” result but is still
not conflict serializable?
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EXAMPLE #3 — INCONSISTENT ANALYSIS

—----------~

Schedule
-------------- \\
T T, I
BEGIN BEGIN :
R(A) |
A= A-10 :
W(A) i
R(A) :
if(A=0): cnt++
R(B) .
if(B=0): cnt++
ECHO cnt
R(B) COMMIT i
B = B+10 i
W(B) l
COMMIT !

Dependency Graph
(
i A
|
|
|
|
|
|
l
\_ B

\-----I

Is it possible to modify only the
application logic so that schedule
produces a "correct” result but is still

not conflict serializable?
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VIEW SERIALIZABILITY

Alternative (weaker) notion of serializability.

Schedules S, and S, are view equivalent if:

— If T, reads initial value of A in S,, then T, also reads initial
value of Ain S..

— If T, reads value of A written by T, in S, then T, also
reads value of A written by T, in S,

— If T, writes final value of A in S;, then T, also writes final
value of Ain S,

56
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VIEW SERIALIZABILITY

T,

Schedule

BEGIN

R(A)“BEGIN

W(A)

COMMIT

W(A)

COMMIT

BEGIN

W(A)
COMMIT

\---------—

Dependency Graph

’------q
\_____________
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VIEW SERIALIZABILITY

Schedule Dependency Graph
[T TS N r """""""" \
T T, 1 | A !
| | BEGIN : I |
I | R(A)wgal BEGIN | : |
: W(A) : i :
i BEGIN | | : I
1 w(A) I I I
: WA | 1A !
| | COMMIT | COMMIT | COMMIT | | i G I
. - . /
I I AN N N NN BN NN BN BN NN BN BN NN B B -
| |
| |
i 1
\ /
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VIEW SERIALIZABILITY

Schedule Dependency Graph

S ITTTTTTTTTT T > r """""""" \
I T T, Ts I i A :
{Es: L
1| RC(A) | I 1
| | - A -
, BEGIN | | : :
1 W(A) 1 I I
I WA | LA I
: COMMIT | COMMIT | COMMIT : I G I
. . . /
I I AN N N NN BN NN BN BN NN BN BN NN B B -
| |

| |

i 1

\ /
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VIEW SERIALIZABILITY

Schedule Dependency Graph

BEGIN
RCA)

BEGIN
W(A)
W(A)

COMMIT | COMMIT | COMMIT

’------q
\_____________

’---------
\---------—
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VIEW SERIALIZABILITY

Schedule Dependency Graph

BEGIN
RCA)

BEGIN

W(A)
W(A)
COMMIT | COMMIT | COMMIT

’------q
\_____________

’---------
\---------—
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VIEW SERIALIZABILITY

{H)

"

Schedule Schedule
T -~ T ~
\
|l T, T, T, : |l T, T, T; :
1| BEGIN : ! | BEGIN !
1| R(A) BEGIN i 1 | R(A) :
: W(A) : 1WA I
. BEGIN | y| ZEW [} | commIT |
1| WeA) || e | BEGIN I
I WA | | ! WCA) ]
I | COMMIT | COMMIT | COMMIT | | i COMMIT :
: : ! BEGIN | I
i I - W(A) :
| ! | COMMIT | |
|
i |
| 'l ‘\ ________________ a’

CMuU-DB
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Schedule Schedule
pomEmEEEEEmEmEmm——_———— N\ pomEEEEEEmEmEmm—_———— ~
{ T T, T, ! Il T, T, T,
1| BEGIN : I | BEGIN
[|R(A) | BEGIN | 1| RCA)

W(A) 1| W(A)
: BEGIN | i VZEW|! | commrr
1| W(A) || o1 BEGIN
! W(A I=Ji W(A
. vy D ! (A)
|| coMMIT | COMMIT ~COMMET” : | COMMIT
_BEGEN~
] : : Qwery D
: Allows all conflict -]
' serializable schedules +

VIEW SERIALIZABILITY

—===d  'Blindwrites’ |

\---------,
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SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But is difficult to enforce efficiently.

Neither definition allows all schedules that you

would consider "serializable".
— This is because they don’t understand the meanings of the
operations or the data (recall example #3)

59
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SERIALIZABILITY

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases get
handled separately at the application level.
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UNIVERSE OF SCHEDULES

-
All Schedules

( View Serializable )

. . 1. )

Conflict Serializable
[ Serial ]

_J

\_ y,
\_
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TRANSACTION DURABILITY

All of the changes of committed transactions

should be persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

62
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ACID PROPERTIES

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

Durability: If a txn commiits, its effects persist.
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CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to
executing the txns one after the other in some order.

CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

C O N ( : L | | S Spanner; Google’s Clobally-l)istributed Database

James C. Corber, Jeffrey Dean, Michael Epstein, Andrew Fikes, (] hristopher Frosi, JJ Furman,
Sanjay Ghemawar, Andrey Gubarey, ¢ hristopher Heiser. Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alex
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal §z

mnder Lloyd, Sergey Melnik, David Mwaura,

ymaniak,

Christopher Tavior, Ruth Wang, Dale Woodford

Gaogle, Inc.

C O n C urr e n Cy C O ntr O 1 an d r e C O Abstract eney over higher availability, as long as they can survive

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchmnuu-.ly-n‘plu.ucd database. It j;

1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter

. .
. rO the first system (o distribute data at global scale andsup- - teplicated data, but we have also spent a great deal of
t l I I I ( ]_ port externally-consistent distributed transactions, This  time in designing and implementing important database
m O St 1 I I I p O r paper describes how Panner is structured, its feature set, Features on top of our distributed-systems nfrastructure

the rationale underlying various design decisions. and a JL”f" "['f"‘“’ many projects “"F":"h ““: B‘““r“" 6. s
novel time APL that expases clonl uncertainty. This APl Bave also consistently receive complaints from users

o and its implementation are critical (o supporting exjer.  that Bigtable can be difficul o use for some kinds of ap-

a ] ] tO Jal consistency and a variey of powertul ey Pty have complex, evolving sehemas,

rren( : ‘ O I I blocking reads in the past, lock-free read-only transac.  OF those that want strong consistency in the presence of

O I I Cu tions. and atomic schema changes, across allof Spanner,  Wide-area replication. (Similar claims have been made
by other authors (37).) Many applications o Google

. . 10 C ) have chosen to use Megastore (5] because of its semi.
RN System autOmatlcally lnserts 1 Introduction relational data model and suppos

i for synchronous repli-
lpite its relatively poor write throughput, As &
. C 1:CC e e,

panuer has evalved from a Bigtable.like
.

. . fey-value store into 2 temporal multi-version

e lt Pita is stored in schematized semi-relationa

We e leV is versioned, and each version is automati-
fmped with its commit time; old versions of

pject to configurabje garbage-colfection poli-
PPlications can read data a old timestamps,

. - with per- Py P s o
1s better to have application programmers deal P it

(ally -distributed database, Spanner provides

sting features. First, the replication con-

1 b Ot_ br data can be dynamically controlled at a
formance problems due to overuse of transactions as b, v

is from its users (to control read latency),
as are from each other (to controf write fa.

' the lack  prozmamsi
tlenecks arise, rather than always coding around

Bynamically and iransparently moved be-
fiews by the system to halance resource us-
peenters. Second Spanner has two features

of transactions.
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CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to
executing the txns one after the other in some order.
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PROJECT #3

SELECT MAX(R.val)
You will build a query execution FROM R JOIN S

engine in your DBMS. ON R.id = S.id
WHERE S.value > 100

0 AggregationExecutor (---------... y
“EmEra W MAX(R.val
Next() o

} I
a HashJoinExecutor(I"""""--"""-N R.id=S.1id

Next()/—/\\fext( ) ha
G value>100
0 SeqScanExecutor 0 SeqScanExecutor <- ahbl b, Sl E

£=CMU-DB
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PROJECT #3 — TASKS

Install Tables in Catalog

Plan Node Executors
— Insert

— Sequential Scan

— Hash Join

— Hash Aggregation

https://15445.courses.cs.cmu.edu/fall2019/project2/
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DEVELOPMENT HINTS

You do not need a working Linear Probe Hash
Table to complete Tasks #1 and #2.

Implement the insert executor first.
You do not need to worry about transactions.

Gradescope is for meant for grading, not
debugging. Write your own local tests.
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THINGS TO NOTE

Do not change any file other than the ones that
you submit to Gradescope.

Rebase on top of the latest BusTub master branch.

Post your questions on Piazza or come to TA
office hours.
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PLAGIARISM WARNING

Your project implementation must be

your own work.

— You may not copy source code from other
groups or the web.

— Do not publish your implementation on

Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic
Integrity for additional information.
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NEXT CLASS

Two-Phase Locking
[solation Levels

]
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