
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

19 Multi-Version
Concurrency Control

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Project #3 is due Sun Nov 17th @ 11:59pm.

Homework #4 was released last week.
It is due Wed Nov 13th @ 11:59pm.

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new

version of that object.
→ When a txn reads an object, it reads the newest version

that existed when the txn started.

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC HISTORY

Protocol was first proposed in 1978 MIT PhD
dissertation.

First implementations was Rdb/VMS and
InterBase at DEC in early 1980s.
→ Both were by Jim Starkey, co-founder of NuoDB.
→ DEC Rdb/VMS is now "Oracle Rdb"
→ InterBase was open-sourced as Firebird.

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://en.wikipedia.org/wiki/Jim_Starkey
https://dbdb.io/db/rdbvms
https://www.embarcadero.com/products/interbase
https://firebirdsql.org/

CMU 15-445/645 (Fall 2019)

MULTI-VERSION CONCURRENCY CONTROL

Writers don't block readers.
Readers don't block writers.

Read-only txns can read a consistent snapshot
without acquiring locks.
→ Use timestamps to determine visibility.

Easily support time-travel queries.

5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

6

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

6

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

6

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

6

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

6

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1
and sets A0 End-TS.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

6

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1
and sets A0 End-TS.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

6

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

T1 reads version A0.

-2456A1

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

-1456A1

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

-1456A1

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

T2 reads version A0
because T1 has not

committed yet.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

T2 has to stall until T1
commits.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

T1 reads version A1 that it
wrote earlier.

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

Committed1T1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

7

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1 2

-2789A2

TS(T1)=1 TS(T2)=2 Database

Active2T2

Committed1T1

Now T2 can create the new
version.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MULTI-VERSION CONCURRENCY CONTROL

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS
manages transactions and the database.

8

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency
Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before

they can read/write a logical tuple.

10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a
version chain per logical tuple.
→ This allows the DBMS to find the version that is visible

to a particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Different storage schemes determine where/what
to store for each version.

11

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied

into a separate delta record space.

12

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

APPEND-ONLY STORAGE

All of the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

On every update, append a new
version of the tuple into an empty
space in the table.

13

Main Table

VERSION VALUE

A0 $111

POINTER

A1 $222 Ø

B1 $10 Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

APPEND-ONLY STORAGE

All of the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

On every update, append a new
version of the tuple into an empty
space in the table.

13

Main Table

VERSION VALUE

A0 $111

POINTER

A1 $222 Ø

A2 $333 Ø

B1 $10 Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

APPEND-ONLY STORAGE

All of the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

On every update, append a new
version of the tuple into an empty
space in the table.

13

Main Table

VERSION VALUE

A0 $111

POINTER

A1 $222 Ø

A2 $333 Ø

B1 $10 Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

APPEND-ONLY STORAGE

All of the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

On every update, append a new
version of the tuple into an empty
space in the table.

13

Main Table

VERSION VALUE

A0 $111

POINTER

A1 $222

A2 $333 Ø

B1 $10 Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Just append new version to end of the chain.
→ Have to traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Have to update index pointers for every new version.
→ Don’t have to traverse chain on look ups.

14

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TIME-TRAVEL STORAGE

15

On every update, copy the
current version to the time-
travel table. Update pointers.

Main Table

VERSION VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VERSION VALUE

A1 $111

POINTER

Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TIME-TRAVEL STORAGE

15

On every update, copy the
current version to the time-
travel table. Update pointers.

Main Table

VERSION VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VERSION VALUE

A1 $111

POINTER

A2 $222

Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TIME-TRAVEL STORAGE

15

On every update, copy the
current version to the time-
travel table. Update pointers.

Overwrite master version in
the main table.
Update pointers.

Main Table

VERSION VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VERSION VALUE

A1 $111

POINTER

A2 $222

Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TIME-TRAVEL STORAGE

15

On every update, copy the
current version to the time-
travel table. Update pointers.

Overwrite master version in
the main table.
Update pointers.

Main Table

VERSION VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VERSION VALUE

A1 $111

POINTER

A2 $222

Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TIME-TRAVEL STORAGE

15

On every update, copy the
current version to the time-
travel table. Update pointers.

Overwrite master version in
the main table.
Update pointers.

Main Table

VERSION VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VERSION VALUE

A1 $111

POINTER

A2 $222

Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DELTA STORAGE

16

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

Main Table

VERSION VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DELTA STORAGE

16

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

Main Table

VERSION VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DELTA STORAGE

16

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

Main Table

VERSION VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) Ø

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DELTA STORAGE

16

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

Main Table

VERSION VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) ØA2 $222

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DELTA STORAGE

16

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

Main Table

VERSION VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DELTA STORAGE

16

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

Txns can recreate old
versions by applying the delta
in reverse order.

Main Table

VERSION VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

17

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does

not have to scan tuples to determine visibility.

18

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

D
irty P

age B
itM

ap

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

D
irty P

age B
itM

ap

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1XGET(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1X XGET(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE-LEVEL GC

19

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS has to update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated…

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

22

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX POINTERS

23

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX POINTERS

23

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97

GET(A)

Append-Only
Newest-to-Oldest

Physical
Address

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX POINTERS

23

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

23

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX POINTERS

23

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

Primary
Key

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX POINTERS

23

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address

TupleId

Physical
Address

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC IMPLEMENTATIONS

24

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

CMU's TBD MV-OCC Delta Txn-level Logical

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://github.com/cmu-db/terrier

CMU 15-445/645 (Fall 2019)

CONCLUSION

MVCC is the widely used scheme in DBMSs.
Even systems that do not support multi-statement
txns (e.g., NoSQL) use it.

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

No class on Wed November 6th

26

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DELETES

The DBMS physically deletes a tuple from the
database only when all versions of a logically
deleted tuple are not visible.
→ If a tuple is deleted, then there cannot be a new version of

that tuple after the newest version.
→ No write-write conflicts / first-writer wins

We need a way to denote that tuple has been
logically delete at some point in time.

27

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DELETES

Approach #1: Deleted Flag
→ Maintain a flag to indicate that the logical tuple has been

deleted after the newest physical version.
→ Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple
→ Create an empty physical version to indicate that a logical

tuple is deleted.
→ Use a separate pool for tombstone tuples with only a

special bit pattern in version chain pointer to reduce the
storage overhead.

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC INDEXES

MVCC DBMS indexes (usually) do not store
version information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from
different snapshots:
→ The same key may point to different logical tuples in

different snapshots.

29

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

READ(A)

Thread #1
Begin @ 10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

READ(A)

Thread #1
Begin @ 10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

DELETE(A)

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

DELETE(A)

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

DELETE(A)

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC DUPLICATE KEY PROBLEM

30

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

READ(A)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MVCC INDEXES

Each index's underlying data structure has to
support the storage of non-unique keys.

Use additional execution logic to perform
conditional inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then have to follow the pointers to
find the proper physical version.

31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

