Carnegie I\Q/Iellon University

iDatabase Recovery

21

- .

) L N &
B =

O Intro to Database Systems AP Andy Pavlo

15-445/15-645 Computer Science
‘ @ Fall 2019 Carnegie Mellon University

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

{H)

"

CRASH RECOVERY

Recovery algorithms are techniques to ensure
database consistency, transaction atomicity, and
durability despite failures.

Recovery algorithms have two parts:

— Actions during normal txn processing to ensure that the
DBMS can recover from a failure.

— Actions after a failure to recover the database to a state TO d ay
that ensures atomicity, consistency, and durability.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H

ARIES

Algorithms for Recovery and
Isolation Exploiting Semantics

Developed at IBM Research in early
1990s for the DB2 DBMS.

Not all systems implement ARIES
exactly as defined in this paper but
they're close enough.

CMuU-DB

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking
and Partial Rollbacks Using
Write-Ahead Logging

C. MOHAN

IBM Almaden Research Center

and

DON HADERLE

IBM Santa Teresa Laboratory

and

BRUCE LINDSAY, HAMID PIRAHESH and PETER SCHWARZ
IBM Almaden Research Center

In this paper we present a simple and efficient method, called ARTES (Algorithm for Recovery
and Isolation Exploiting Semantics), which supports partial rollbacks of transactions, fine-
granularity (e.g., record) locking and recovery using write-ahead logging (WAL). We introduce
the paradigm of repeating history to redo all missing updates before performing the rolibacks of
the loser transactions during restart after a system failure. ARIES uses a log sequence number
in each page to correlate the state of a page with respect to logged updates of that page. All
updates of a transaction are logged. including those performed during rollbacks, By appropriate
chaining of the log records written during rollbacks to those written during forward progress, a
bounded amount of logging is ensured during rollbacks even in the face of repeated failures
during restart or of nested rollbacks We deal with a variety of features that are very important
in building and operating an industrial-strength transaction processing system ARIES supports
fuzzy checkpoints, selective and deferred restart, fuzzy image copics, media recovery, and high
concurrency lock modes (e.g., increment /decrement) which exploit the semantics of the opera-
tions and require the ability to perform operation logging. ARIES is flexible with respect
to the kinds of buffer management policies that can be implemented. It supports objects of
varying length cfficiently. By enabling parallelism during restart, pageoriented redo, and
logical undo, it enhances concurrency and performance. We show why some of the System R
paradigms for logging and recovery, which were based on the shadow page technique, need to be
changed in the context of WAL, We compare ARIES to the WAL-based recovery methods of

Authors' addresses: C Mohan, Data Base Technology Institute, IBM Almaden Rescarch Conter,
San Jose, CA 95120; D. Haderle, Data Base Technology Institute, IBM Santa Teresa Labora-
tory, San Jose, CA 95150; B. Lindsay, H. Pirahesh, and P. Schwarz, IBM Almaden Rescarch
Center, San Jose, CA 95120

Permassion to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and or
specific permission

© 1992 03625915 /92/0300.0094 $1.50

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992, Pages 94162

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
https://dl.acm.org/citation.cfm?id=128770

$2CMU-DB

ARIES — MAIN IDEAS

Write-Ahead Logging:
— Any change is recorded in log on stable storage before the

database change is written to disk.
— Must use STEAL + NO-FORCE buffer pool policies.

Repeating History During Redo:
— On restart, retrace actions and restore database to exact
state before crash.

Logging Changes During Undo:
— Record undo actions to log to ensure action is not
repeated in the event of repeated failures.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

TODAY'S AGENDA

Log Sequence Numbers

Normal Commit & Abort Operations
Fuzzy Checkpointing

Recovery Algorithm

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

£=CMU-DB

WAL RECORDS

We need to extend our log record format from last
class to include additional info.

Every log record now includes a globally unique
log sequence number (LSN).

Various components in the system keep track of
LSNs that pertain to them...

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

£=CMU-DB

LOG SEQUENCE NUMBERS

Name Where Definition
flushedLSN Memory Last LSN in log on disk
pageLSN page, Newest update to page,
recLSN page, Oldest update to page,
since it was last flushed
lastLSN T, Latest record of txn T,
MasterRecord Disk LSN of latest checkpoint

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

£=CMU-DB

WRITING LOG RECORDS

Each data page contains a pageLSN.
— The LSN of the most recent update to that page.

System keeps track of flushedLSN.
— The max LSN flushed so far.

Before page x can be written to disk, we must flush

log at least to the point where:
— pageLSN, < flushedLSN

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

U

"

WRITING LOG RECORDS

m=m s Log Sequence Numbers [*>
Log Sequence Numbers [: = VT !
[B N e T B | : """""""""""""" <T, BEGIN> 1
I <T; BEGIN> : I 003 <T, g :
004 8<T, BEGIN
: <Ts, A, 9, 8 1 : A, 2,> 3> I
006 §<T, BEGIN
i <T., B, 5, 1> I | 007 |<clieckpoInT> ¢ :
l <T, COMMIT> ' ! s, :
i . : : BEGIN> -
. X, 5, 6
: 7 ~41 i LY. 9, e I
I\ LI 1 ’ CoMMIT> I
' ' o orefer’ ¢ 1 2 :
([h 1 4 & 0
: BU#e€r Pool . N 4 I
Hfe) | e N [|
' I I I A=9|B=5|C=2 I
. I T _AT—————— i
Il | Not safe to unpin because | W) [Fosterrecord :
| ageLSN > flushedLSN || 1 i I
228 S ! i Database !
1CMU°DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

10

WRITING LOG RECORDS

All log records have an LSN.

Update the pageLSN every time a txn modifies a
record in the page.

Update the flushedLSN in memory every time the
DBMS writes out the WAL buffer to disk.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

11

NORMAL EXECUTION

Each txn invokes a sequence of reads and writes,
followed by commit or abort.

Assumptions in this lecture:
— All log records fit within a single page.
— Disk writes are atomic.

— Single-versioned tuples with Strict 2PL.
— STEAL + NO-FORCE buffer management with WAL.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

TRANSACTION COMMIT

Write COMMIT record to log.

All log records up to txn’s COMMIT record are
flushed to disk.

— Note that log flushes are sequential, synchronous writes
to disk.
— Many log records per log page.

When the commit succeeds, write a special TXN-
END record to log.

— This does not need to be flushed immediately.

12

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H)

"

13

TRANSACTION COMMIT

---------------\

WAL

======1We can trim the in-memory
log up to flushedLSN

,,,,,, —
012:<T, BE""

013:<T,, A, 9, 8>
014:<T,, B, 5, 1>
015:<T, COMMIT>~—

-\

I 001:<T, BEGIN>
002:<T,, A, 1, 2>

| 003:<T, COMMIT>

1 004:<T, BEGIN>

I 005:<T,, A, 2, 3>
006:<T, BEGIN>

| 007 : <CHECKPOINT>

I 008:<T, COMMIT>

I 009:<T,, A, 3, 4>

- 010:<T,, B, 4, 2>

|

|

011:<T,, COMMIT>
== 012:<T, BEGIN>
013:<T,, A, 9, 8>

1
1
1
1
!
: 1
099:<T, TXN-END> f7 |1
1
1
1
L
1
1

-----------\

\-----------

J 014:<T,, B, 5, 1>
015:<T, COMMIT>
4)
Buffer Pool 4
— T [pageLsv] rectsn |
A=9|B=5|C=2 I VA — A=9|B=5|C=2
MasterRecord
FlushedL SN =" | : ererEeen
. ——\ J] I Database
S - Gt
CMU-DB JlushedLSN = 015 D 015015, T 0

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

TRANSACTION ABORT

Aborting a txn is actually a special case of the
ARIES undo operation applied to only one
transaction.

We need to add another field to our log records:

— prevLSN: The previous LSN for the txn.
— This maintains a linked-list for each txn that makes it
easy to walk through its records.

15

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

£=CMU-DB

TRANSACTION ABORT

-------- N ¢
LSN | prevLSN|— i I WAL
: VA2 an) = (Tal |) 1 77777 : __ : ,,,,,,,,,,,,,,,,,,,,,,, I
i 12|nil|<T, BE
i 81 3 : g: 5 <T4 A Important: Need to record what
| | le1ajo13)<t;. Bl stepswe took to undo the txn.
015]|014:<T, ABORT i !
I 772 I .
I | | 099]098:<T, TXN-END>” -1 I
'\ S |
! Buffer Pool . | /4
: [pageLsM rectsv] | | : 777 : Le ajeLSNI :ECLSN_I
I A=9|B=5|c=2 : 77777777777 } 777777777777777777 A=9|B=5|C=2
1| |lA=saB=5|c=2] | ¢
| | | MasterRecord
1 flushedL SN | 1
1 J 1 i Database
e e iy N e e e e s

\-----------,

16

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

17

COMPENSATION LOG RECORDS

A CLR describes the actions taken to undo the
actions of a previous update record.

[t has all the fields of an update log record plus the
undoNext pointer (the next-to-be-undone LSN).

CLRs are added to log like any other record.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

18

TRANSACTION ABORT — CLR EXAMPLE

prevLSN TxnId Type Object Before After UndoNext

001 nil T, BEGIN - - - -
002 001 T, UPDATE A 30 40 -
011 002 T, ABORT - - - -

@CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

19

TRANSACTION ABORT — CLR EXAMPLE

UndoNext

Object Before After

LSN

prevLSN TxnId Type
002 001 T, UPDATE 0 :
A
011 002 T, ABORT - - I\ - -
z /AR
026 011 T, |ctr-e02]a | 40 || 30 | | o0t |

The LSN of the next log
record to be undone.

CMU 15-445/645 (Fall 2019)

$2CMU-DB

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

£=CMU-DB

20

TRANSACTION ABORT — CLR EXAMPLE

prevLSN TxnId Type

Object Before After UndoNext

001 nil T, BEGIN - - - -
002 001 T, UPDATE A 30 40 -
011 002 T, ABORT - - - -
026 011 T, CLR-002 A 40 30 001
027 026 T, TXN-END - - - nil

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

ABORT ALGORITHM

First write an ABORT record to log for the txn.

Then play back the txn's updates in reverse order.

For each update record:

— WTrite a CLR entry to the log.
— Restore old value.

At end, write a TXN-END log record.

Notice: CLRs never need to be undone.

21

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

22

TODAY'S AGENDA

Leg Sequence Numbers

N e 9 Al - .
Fuzzy Checkpointing

Recovery Algorithm

$2CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

23

NON-FUZZY CHECKPOINTS

The DBMS halts everything when it takes a

checkpoint to ensure a consistent snapshot:
— Halt the start of any new txns.

— Wait until all active txns finish executing.

— Flushes dirty pages on disk.

This is obviously bad...

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the m

DBMS takes the checkpoint. o

— Prevent queries from acquiring write latch '
on table/index pages.

— Don't have to wait until all txns finish
before taking the checkpoint.

Checkpoint
N
®
N

W e must record internal state as of

the beginning of the checkpoint.
— Active Transaction Table (ATT)
— Dirty Page Table (DPT)

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

25

ACTIVE TRANSACTION TABLE

One entry per currently active txn.

— txnId: Unique txn identifier.

— status: The current "mode" of the txn.
— lastLSN: Most recent LSN created by txn.

Entry removed when txn commits or aborts.

Txn Status Codes:

— R — Running

— C — Committing

— U — Candidate for Undo

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

£=CMU-DB

DIRTY PAGE TABLE

Keep track of which pages in the buffer pool

contain changes from uncommitted transactions.

One entry per dirty page in the buffer pool:
— recLSN: The LSN of the log record that first caused the
page to be dirty.

26

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

27

SLIGHTLY BETTER CHECKP 1S N
WAL
<T, BEGIN>

At the first checkpoint, T, is still <T, BEGIN>
<T,, A>P,,, 100, 120>

running and there are two dirty pages <T, COMMIT>

P.. P.) <T,, C+P,,, 100, 120>

(11 22) <CHECKPOINT
ATT=(T,},

At the second checkpoint, T, is active DPT=(P,,,P,,}> 4
<T, START>

and there are two dirty pages (P4, P33). <T,, AsP;;, 120, 130>

<T, COMMIT>

. . <T., BsP.., 200, 400>
This still is not ideal because the DBMS <CHECKPOINT

must stall txns during checkpoint... B ATT=(T,},
DPT={P,,,P,;}>4ul

<Ty, BoPyy, 400, 600>
\C

$2CMU-DB

019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

28

FUZZY CHECKPOINTS

A fuzzy checkpoint is where the DBMS allows
active txns to continue the run while the system
flushes dirty pages to disk.

New log records to track checkpoint boundaries:

— CHECKPOINT-BEGIN: Indicates start of checkpoint
— CHECKPOINT-END: Contains ATT + DPT.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

FUZZY CHECKPOINT(

B <7, BEGIN>

The LSN of the CHECKPOINT-BEGIN
record is written to the database's

MasterRecord entry on disk when

the checkpoint successfully completes.

Any txn that starts after the
checkpoint is excluded from the ATT
in the CHECKPOINT-END record.

£=CMU-DB

WAL R

<T, BEGIN>

<T,, AsP,,, 100, 120>
<T, COMMIT>
<T,, CP,,, 100, 120>

B <CHECKPOINT-BEGIN>

<T, START>
AP, 120, 130>

B <CHECKPOINT-END

ATT=(T
DPT=(P,,}>
<T, COMMIT>
<T,, BsP,;, 200, 400>
<CHECKPOINT-BEGIN>
<T,, BsP,;, 10, 12>
<CHECKPOINT-END

ATT={T,},

DPT={P,,}> 7

\C

29

019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

30

ARIES — RECOVERY PHASES

Phase #1 — Analysis

— Read WAL from last checkpoint to identify dirty pages in
the buffer pool and active txns at the time of the crash.

Phase #2 — Redo

— Repeat all actions starting from an appropriate point in
the log (even txns that will abort).

Phase #3 - Undo

— Reverse the actions of txns that did not commit before
the crash.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

31

ARIES — OVERVIEW

WAL

Oldest log 1
record of txn
active at crash J

Start from last BEGIN-CHECKPOINT
found via MasterRecord.

Smallest

recLSN in DPT -
after Analysis j
Start of Iastl l |
checkpoint j l
A R U
006

Analysis: Figure out which txns
committed or failed since checkpoint.

Redo: Repeat all actions.

Undo: Reverse effects of failed txns.

CRASH! @

—-----------R
-----------_I

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

32

ANALYSIS PHASE

Scan log forward from last successful checkpoint.

[f you find a TXN-END record, remove its
corresponding txn from ATT.

All other records:
— Add txn to ATT with status UNDO.
— On commit, change txn status to COMMIT.

For UPDATE records:
— If page P not in DPT, add P to DPT, set its recLSN=LSN.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

33

ANALYSIS PHASE

At end of the Analysis Phase:

— ATT tells the DBMS which txns were active at time of
crash.

— DPT tells the DBMS which dirty pages might not have
made it to disk.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

ANALYSIS PHASE EXAMPLE

-

2\

\J

ATT={Tge,Tg7},
DPT={P,q,P;3}>

B 040:<T,, COMMIT>

B 050: <T,, TXN-END>

CRASH!

7

B 010: <CHEC Modify A in page P;;
w020 <7, [r>P,)) 10, 15>
: 96 33 020

=) 030 : <CHECKPOINT-END

43333

_nm , (Txnld, Status) ‘(Pageld, RecLSN)

34

7 —

7 —

030

040

050

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

REDO PHASE

The goal is to repeat history to reconstruct state at

the moment of the crash:
— Reapply all updates (even aborted txns!) and redo CLRs.

There techniques that allow the DBMS to avoid
unnecessary reads/writes, but we will ignore that
in this lecture...

35

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

36

REDO PHASE

Scan forward from the log record containing
smallest recLSN in DPT.

For each update log record or CLR with a given

LSN, redo the action unless:

— Affected page is not in DPT, or
— Affected page is in DPT but that record's LSN is less than
the page's recLSN.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

37

REDO PHASE

To redo an action:

— Reapply logged action.

— Set pageLSN to log record's LSN.

— No additional logging, no forced flushes!

At the end of Redo Phase, write TXN-END log

records for all txns with status C and remove them
from the ATT.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

UNDO PHASE

Undo all txns that were active at the time of crash

and therefore will never commit.
— These are all the txns with U status in the ATT after the
Analysis Phase.

Process them in reverse LSN order using the
1astLSN to speed up traversal.

Write a CLR for every modification.

38

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H)

"

39

FULL EXAMPLE

‘-----------------------------------~

LSN ., LOG

00 = <CHECKPOINT-BEGIN>
05 =~ <CHECKPOINT-END>
104-<T,, ASP,, 1, 2>
20+ <T,, B>P,, 2, 3>
30 == <T, ABORT

. [}
40 ==~ <CLR: Undo T, LSN 10>==3

45 == <T, TXN—END>—1
50 = <T,, CsP,, 4, 5>
60-5—<T2, D>Ps, 6, 7>

X crasH!

\-----------------------------------_

prevLSNs

-----------~
\-----------'

CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H)

"

40

FULL EXAMPLE
mmmmmem—m——e—e—e. LSN | LOG

00,05 -~ <CHECKPOINT-BEGIN>, <CHECKPOINT-END>
102 <T,, ASP,, 1, 2>
201 <T, B>P,, 2, 3>
30 - <T, ABORT>

40,45 - <CLR: Undo T, LSN 10>, <T, TXN-END>

50 == <T,, CsP,, 4, 5>

60 = <T,, D>P,, 6, 7>
X CRASH! RESTART! WAL to disk!

70 - <CLR: Undo T, LSN 6@, UndoNex -

80,85 - <CLR: Undo T, LSN 50>, <T, TXN-END>

X CRASH! RESTART!

Flush dirty pages +}

flushedlL SN

’-----------“

AuN EEN BN BN BN BN BN BN BN BN B

CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H)

"

41

FULL EXAMPLE
mmmmmmmm——————e. LSN | LOG

40,45 -2 <CLR: Undo T, LSN 10>, <T, TXN-END>

1
é)
ATT : 00,05 -2~ <CHECKPOINT-BEGIN>, <CHECKPOINT-END>

TxnId Status lastLSN : 10 - <T,, AP, 1, 2>

A Z C : 20 2 <T,, B+P,, 2, 3>

- - — N\ | 30 =~ <T, ABORT>
i
i

’-----------“

DPT \ 50 -~ <T,, C>P,, 4, 5>
! 60 == <T,, D>P;, 6, 7>
5 0 ! X CRASH! RESTART!
3 10 ! 70 - <CLR: Undo T, LSN 6@, UndoNext 20>=
\ J : 80,85 - <CLR: Undo T, LSN 50>, <T, TXN-END>
Flushedl SN ! X CRASH! RESTART!

90,95 = <CLR: Undo T, LSN 20>, <T, TXN-END>
CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

42

ADDITIONAL CRASH ISSUES (1)

W hat does the DBMS do if it crashes during recovery

in the Analysis Phase?
— Nothing. Just run recovery again.

W hat does the DBMS do if it crashes during recovery
in the Redo Phase?

— Again nothing. Redo everything again.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

43

ADDITIONAL CRASH ISSUES (2)

How can the DBMS improve performance during
recovery in the Redo Phase?

— Assume that it is not going to crash again and flush all
changes to disk asynchronously in the background.

How can the DBMS improve performance during
recovery in the Undo Phase?

— Lazily rollback changes before new txns access pages.
— Rewrite the application to avoid long-running txns.

$2CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

44

CONCLUSION

Mains ideas of ARIES:

— WAL with STEAL/NO-FORCE

— Fuzzy Checkpoints (snapshot of dirty page ids)

— Redo everything since the earliest dirty page

— Undo txns that never commit

— Write CLRs when undoing, to survive failures during
restarts

Log Sequence Numbers:

— LSNs identify log records; linked into backwards chains
per transaction via prev_LSN.

— pageLSN allows comparison of data page and log records.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

45

NEXT CLASS

You now know how to build a single-node DBMS.

So now we can talk about distributed databases!

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

