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DISK-ORIENTED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.
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SLOTTED PAGES

Slot Array
|

The most common layout scheme is ' ‘
called slotted pages. Header

The slot array maps "slots" to the
tuples' starting position offsets.

Tuple #3

The header keeps track of:
— The # of used slots
— The offset of the starting location of the \ J

'
last slot used. Fixed/Var-length
Tuple Data

Tuple #2 Tuple #1
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.
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LOG-STRUCTURED FILE ORGANIZATION

Instead of storing tuples in pages, the
DBMS only stores log records.

The system appends log records to the

file of how the database was modified:

— Inserts store the entire tuple.

— Deletes mark the tuple as deleted.

— Updates contain the delta of just the
attributes that were modified.
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LOG-STRUCTURED FILE ORGANIZATION

Page

INSERT id=1,val=a
INSERT id=2,val=b

Instead of storing tuples in pages, the
DBMS only stores log records.

The system appends log records to the
file of how the database was modified:
— Inserts store the entire tuple.
— Deletes mark the tuple as deleted.

— Updates contain the delta of just the .
attributes that were modified. .
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LOG-STRUCTURED FILE ORGANIZATION

Page

INSERT id=1,val=a
INSERT id=2,val=b

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

DELETE id=4

UPDATE val=X (id=3)

INSERT 1id=3,val=c

UPDATE val=Y (id=4)
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LOG-STRUCTURED FILE ORGANIZATION

Page
To read a record, the DBMS scans the |
log backwards and "recreates" the

tuple to find what it needs.

1d=1

DELETE id=4

1d=2

Build indexes to allow it to jump to

INSERT 1id=3,val=c
o id=3 ,
locations in the log. UPDATE val=X (id=3)

1d=4 IS PDATE val=y (id=4)
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LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

Build indexes to allow it to jump to
locations in the log.

Periodically compact the log.
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id=2,val=b
id=3,val=X
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LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

Build indexes to allow it to jump to
locations in the log.

Periodically compact the log.

AP A CH

HEHSE “9¢ Slevelos
o cassandra
15-445/645 (Fall 2020)

Page

id=1,val=a
id=2,val=b
id=3,val=X
id=4,val=Y

* RocksDB


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LOG-STRUCTURED COMPACTION

Compaction coalesces larger log files into smaller
files by removing unnecessary records.

Level Compaction

Sorted Sorted

-
O
)
O
©
Q.
=
@)
O
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LOG-STRUCTURED COMPACTION

Compaction coalesces larger log files into smaller
files by removing unnecessary records.

Level Compaction

Level 0

Level 1 Sorted Log File
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LOG-STRUCTURED COMPACTION

Compaction coalesces larger log files into smaller
files by removing unnecessary records.

Level Compaction

Sorted Sorted
Level 0 Log File j§ Log File

Level 1 Sorted Log File Sorted Log File

Level 2 Sorted Log File
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LOG-STRUCTURED COMPACTION

Compaction coalesces larger log files into smaller
files by removing unnecessary records.

Level Compaction Universal Compaction

Sorted Sorted Sorted Sorted Sorted Sorted

Level 0 Log File j§ Log File

Log File | Log File jf Log File  Log File

Level 1 Sorted Log File Sorted Log File ‘
................................................ Sorted : Sorted
Level 2 Sorted Log File
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TODAY'S AGENDA

Data Representation
System Catalogs
Storage Models
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TUPLE STORAGE

A tuple is essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals

VARCHAR/VARBINARY/TEXT/BLOB
— Header with length, followed by data bytes.

TIME/DATE/TIMESTAMP

— 32/64-bit integer of (micro)seconds since Unix epoch
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VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses

the "native" C/C++ types.
— Examples: FLOAT, REAL/DOUBLE

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers
but can have rounding errors...
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VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

int main(int argc, char* argv[]) {

float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+ty);
printf("0.3 = %f\n", 0.3);
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VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

#include <stdio.h>

in|

. . x+y = 0.30000001192092895508
int main(int argc, char* argvll) { ||p 3 - §.29999999999999995890

float x = 0.1;
float y = 0.2;
) printf("x+y = %.20f\n", x+y);

printf("0.3 = %.20f\n", 0.3);
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FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors

are unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if you give up arbitrary precision.

Demo: Postgres, MySQL, SQL Server, Oracle
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POSTGRES: NUMERIC

# of Digits
Weight of 1°t Digit
Scale Factor
Positive/Negative/NaN
Digit Storage
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typedef unsigned char NumericDigit;:

typedef struct {

int ndigits;

hint WE i
/int sdale;
int sien;

/NumericDigit *digits;

} numeric;
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#

Weight of

Sca
Positive/Negat
Digi
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add_var() -

*

ES

* Full version of add functionality on variable level (handling signs).
* result might point to one of the operands too without danger.

EGTYPESnumeric add{numeric *varl, numeric *var2, numeric *result)

*®
* Decide on the signs of the twe variables what to do
*®

if {varl->sign == NUMERIC POS)
1f (var2-=sign == NUMERIC POS)
{

-
* Both are positive result = +(ABS(varl) + ABS(var2))
-
1f (add_abs(varl, var2, result) l= 0)
return -1;
result-»sign = NUMERIC POS;
else

/ﬂr
* varl is positive, var2? is negative Must compare absolute values
L3

iw;tck (cmp_abs(varl, var2))

#

ABS({varl) == ABS{var2)
result = ZERD

*®

*f
zero_var(result);

result-=rscale = Max(varl-=rscale, var2-»rscale);
resukt-)dscale = Max(varl-=dscale, var2->dscale);
break;

* ABS(varl) = ABS(var2)
* result = +(ABS(varl) - ABS(var2))
k3

*

1f (sub _abs(varl, var2, result) != @)
return -1;
result-»sign = NUMERIC FOS;
break;
case -1:

* ABS{varl) = ABS(var2)
* result = -(ABS(var2) - ABS{varl})
-

NumericDi

14
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MYSQL: NUMERIC

# of Digits Before Point

# of Digits After Point
Length (Bytes)
Positive/Negative
Digit Storage
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typedef int32 decimal_digit_t;

struct decimal_t
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#of D

# of
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static int do_add(const decimal t *froml, const decimal_t *from2,
decimal_t *to) {
int intgl = RDUND_UP(fromi-:intg), intg2 = ROUND_UP(from2—>intg),
fracl = ROUND_UP(fr0m1—>frac), frac2 = ROUND_UP(from2—>frac),
fraco = std: :max{fracl, frac2), intgs = std: max(intgl, intg2), error;
dec1 *bufi, *buf2, *pufe, *stop, *stop2, X, carrvy;

sanity(to);

/* is there a need for extra word because of carry ? */
x = intgl > intg2
2 froml->buf[@]
. intg2 > intgl ? from2->buf[e] : froml->buf[@] + from2->buf[0];
if {unlikely(x = DIG_MAX - 1)) /7 ves, there is */
{
intgo++;
to->huf[0] = 8; /* safety */
}

FIX_INTG_FRAC_ERROR(t0->len, intge, fraco, error);

if (unlikely(erro == E_DEC_OVERFLOW)) {
max_decimal(to->1en + pIG_PER_DEC1, O, to);
return ervor;

}
puf® = to->buf + intgd + frace;
to-=sign = fromi->sign;

to->frac = std: :max (fromi->frac, from2->frac);
L. . .~ % nTe PER DEC1;

15
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LARGE VALUES

Most DBMSs don't allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)
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Tuple

16

Header
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Overflow Page

VARCHAR DATA o>
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EXTERNAL VALUE STORAGE

Some systems allow you to store a
really large value in an external file.

Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the

contents of an external file.
— No durability protections.
— No transaction protections.
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EXTERNAL VALUE |

Some systems allow you to store a
really large value in an external file.

Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the

contents of an external file.

— No durability protections.
— No transaction protections.

Large Object Sf

sears@cs.berkeley.

Abstract

To BLOB or Not To BLOB:

Russell Sear.

I: Microsoft Re:

edu, vaningen@m

torage in a Database or a Filesys

“atharine van Ingen', Jim Gra y'
search, 2: University of California at Berkeley
rosoft.com, gray@microsoft.com
MSR-TR-2006-45
April 2006 Revised June 2006

1. Introduction

Application designers must decide whether to Jlore  Application data objects are getting
large objects (BLOBs) in a filesystem or in a database. media  becomes ubiquitous, Furthermore,  the
is based on factors such as Increasing popularity of web services and  other

Generally, this decision

application simplicity or manageability.

performance affects these

Folklore tells us that databases effi
large numbers of small objects, while file

more efficient for lang

break-cven point? When is accessing a BLOB store multiple versions of
as a file cheaper than accessing a B

database record?

factors.

Often, system network applications means that

managed static archives of “fip

e objects,  Where is the updating these objects, the archi

Of course, this depends on the

filesystem, database system, and workload in ques
This study shows that when comparing the NTFS

system and SQL Server
Create, {read,
workload, BLOBs smal

efficiently handled by SQL Sery

LOB stored as 2 yangé ror “versioning”), o

. replacement  (as  in SharePoint
particular /b onepoing)).
n. Application designers have the
e Jarge objects as files in the filesy:

tem?

larger as digital

ystems that once
ed” objects now

ntly handle manage frequently modified versions of application
SYUCSSAT®  data as it is being creatod and updated. Rather than

ve cither stores

e objects (the V of WebDAY
mply does wholesale

Team  Services

choice of storing
stem, as BLOBs

2005 database system on a (binary large objects) in g database, or as g

r ace}*
ler than 256KB
r, while

delete b ination of both. Only folkl

ore is available

are more regarding the tradeoffs  often the design decision is

NTFS is  poced on which technology the desi

gner knows best.

more cfficient BLOBS larger than IMB. OF course, Most designers wil tel you that a dargbaee. 1 probably

this break-cven point
database system

By measuring the performance
workload typical of web application:

Pprotocols such as WebDAYV [WebDAV], we

the break-even point  depends
However, our experiments suggest that Storage age, the

fatio of bytes in deleted or replaced objects

live objects, is dominant
fragmentation tends to i

. As storage age
ncrcase. The files

study has better fragmentation  contro}

database we used, suggesting the database system

will vary among different best for small binary objects and that ¢ t files are best

lesystems, and workloads. for large objects. But, what is the break-cven point?
of a storage server g TH° the tradeoffs?

s which use get/put This article characterizes the performance of an

found that  peniy Write-intensive web application that deals

on many factors. o relatively large objects. Two

9 System are compared: one uses a rela
0 bytes in

versions of the
tional database to

Store large objects, while the other version stores the

ICIERSES,  gplects as files in the filesystem. We measure how
Ihem e perfonmance changes over time ar the storage becomes
than the fvned The article concludes by describing and

would benefit from incorporating ideas from filesystem 0y picking a storage sysiem
architecture. Conversely, filesystem performance il filesystem and database improvements for large object

be improved by using database techniques to handl

small files.

Surprisingly, for these studies,

object size is held constant, the distribution

sizes did not significanily
found that, in addition to

low ratio of free space to average object size loads 1
i i ° teoradt

affect performance.

low percentage free space, a g e on storage fragmentation issues. In essence,

filesystems seem to have beter fragmentation handling

and

support.

2 the factors that a designer should consider

It also suggests

One surprising (to us at least) conclusion of our

of object  jotrminant of the break-even poin

when average work is that stomge fragmentation is the main

't in the tradeoff.

- Wealso  quoerore much of our work and much of this aricle

than databases and this drives the
down from about IMB to about 256K

break-even point
B.
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SYSTEM CATALOGS

A DBMS stores meta-data about databases in its

internal catalogs.

— Tables, columns, indexes, views
— Users, permissions

— Internal statistics

Almost every DBMS stores databases' catalogs in

another database.
— Wrap object abstraction around tuples.
— Specialized code for "bootstrapping" catalog tables.
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SYSTEM CATALOGS

You can query the DBMS’s internal

INFORMATION_SCHEMA catalog to get info about

the database.

— ANSI standard set of read-only views that provide info
about all the tables, views, columns, and procedures in a
database

DBMSs also have non-standard shortcuts to
retrieve this information.
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ACCESSING TABLE SCHEMA

List all the tables in the current database:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite
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ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MysSQL

.schema student SQLite
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DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)

— Fast operations that only read/update a small amount of
data each time.

On-Line Analytical Processing (OLAP)

— Complex queries that read a lot of data to compute
aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance
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DATABASE WORKLOADS
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BIFURCATED ENVIRONMENT

%% Transactions [«Q Analytical Queries

OLTP Data Silos OLAP Data W arehouse
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BIFURCATED ENVIRONMENT

4%% Transactions
[«Q Analytical Queries

HTAP Database OLAP Data W arehouse
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OBSERVATION

The relational model does not specify that we
must store all of a tuple's attributes together in a
single page.

This may not actually be the best layout for some
workloads...
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WIKIPEDIA EXAMPLE

CREATE TABLE useracct ( CREATE TABLE pages (
userID INT PRIMARY KEY, pageID INT PRIMARY KEY,
userName VARCHAR UNIQUE, title VARCHAR UNIQUE,
: latest INT
); —® S REFERENCES revisions (revID),
A );

A

CREATE TABLE revisions (

revID INT PRIMARY KEY,
@ userID INT REFERENCES useracct (userlID),
pageID INT REFERENCES pages (pagelD)®
content TEXT,

updated DATETIME

);
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OLTP

On-line Transaction Processing:

— Simple queries that read/update a small
amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first.
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SELECT P.*, R.x*
FROM pages AS P
INNER JOIN revisions AS R
ON P.latest = R.revID
WHERE P.pagelD = ?
UPDATE useracct
SET lastLogin = NOW(),
hostname = ?
WHERE userID = ?
INSERT INTO revisions
VALUES (7,7..,7)

29
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OLAP

On-line Analytical Processing:
— Complex queries that read large portions
of the database spanning multiple entities.

You execute these workloads on the

data you have collected from your
OLTP application(s).
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SELECT COUNT(U.lastLogin),
EXTRACT(month FROM
U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastlLogin)

30
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DATA STORAGE MODELS

The DBMS can store tuples in different ways that
are better for either OLTP or OLAP workloads.

We have been assuming the n-ary storage model
(aka "row storage") so far this semester.
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N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

Ideal for OLTP workloads where queries tend to
operate only on an individual entity and insert-
heavy workloads.
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N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

Header | userID JuserNamefuserPass|hostname] lastlLogin éTUple #1

Header | userID JuserNamejuserPassjhostname| lastlLogin

Header | userID juserNamejuserPassjhostname| lastlLogin

Header = = = =
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N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

userID JuserNamejuserPass|hostname] lastlLogin éTUple #1

| <Tuple #2
| Tuple 13

Header <Tu ple H4
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N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

/| nsM pisk Page
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N-ARY STORAGE MODEL (NSM)

SELECT * FROM useracct
WHERE userName = ?
' Index

AND userPass = ?
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N-ARY STORAGE MODEL (NSM)

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

=
Index
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N-ARY STORAGE MODEL (NSM)

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?,7,..7)

=
Index

NSM Disk Page

3

Header

userID

userNamejuserPass|hostname|] lastlLogin
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N-ARY STORAGE MODEL (NSM)

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?,7,..7)

» Index
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NSM Disk Page
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N-ARY STORAGE MODEL (NSM)

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)
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N-ARY STORAGE MODEL (NSM)

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

/| nsM pisk Page
/

Header | userID juserNamejuserPassjhostname| lastlLogin

Header | userID JuserNamejuserPassjhostname|] lastlLogin

Header | userID JuserNamejuserPass|hostname] lastLogin

Header | userID juserNamefuserPassjhostname| lastlLogin

£2CMU-DB

15-445/645 (Fall 2020)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

N-ARY STORAGE MODEL (NSM)

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'

GROUP BY EXTRACT(month FROM U.lastlLogin)
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N-ARY STORAGE MODEL (NSM)

SELECT COUNTdU.lastLoginp,
EXTRACT (month FROM |[U.lastLogin)) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLoginD

/| nsM pisk Page

Header | userID juserNamefuserPassjhostname] lastlLogin

Header | userID JuserNameJuserPassjhostnamej] lastlLogin

Header | userID JuserNamejuserPassfhostname}] lastlLogin

Header | userID juserNamefuserPassjhostname] lastlLogin

£2CMU-DB

15-445/645 (Fall 2020)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

N-ARY STORAGE MODEL (NSM)

SELECT COUNTdU.lastLoginp,
EXTRACT (month FROM |[U.lastLogin)) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLoginD
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N-ARY STORAGE MODEL

Advantages

— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple.
Disadvantages

— Not good for scanning large portions of the table and/or
a subset of the attributes.
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DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store".

Ideal for OLAP workloads where read-only

queries perform large scans over a subset of the
table’s attributes.
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DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store".
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DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store".
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DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store".
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hostnamejhostnamefhostname|hostnamelhostname|hostname

y i
1aSt|—0gin_] hostname|hostname| hostname|hostname|hostname|hostname

E==S=S [ES=S== hostname|hostname|hostname|hostname|hostname|hostname

hostnamejhostname|hostnamejhostname]hostnamejhostname

userPass

§=CMU-DB

15-445/645 (Fall 2020)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DECOMPOSITION STORAGE MODEL (DSM)

SELECT COUNTdU.lastLoginp,
EXTRACT (month FROM |[U.lastLogin)) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLoginD
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DECOMPOSITION STORAGE MODEL (DSM)

SELECT COUNTdU.lastLoginp,
EXTRACT (month FROM |[U.lastLogin)) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLoginD
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TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids

— Each value is stored with its tuple id in a column.

Offsets Embedded Ids
s lcfo

wma@h
wm—-&h
wm—-sh
wm—tsh

WN= O
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DECOMPOSITION STORAGE MODEL (DSM)

Advantages

— Reduces the amount wasted I/O because the DBMS only
reads the data that it needs.

— Better query processing and data compression (more on
this later).
Disadvantages

— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching.
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DSM SYSTEM HISTORY

rl‘

1970s: Cantor DBMS ‘ SYB,‘A-XS\E
1980s: DSM Proposal monetdb)
1990s: SybaselQ (in-memory only) \'/ERTK‘/\
2000s: Vertica, Vector Wise, MonetDB
/[ % vectorwise
2010s: Everyone MariaDB
Ddrid ¥ ET g e
ORACLE Greenplumc Ol"M peﬂﬁ Sl oasilie
o ClickHouse HEYRISEE
ZSQLServer Exasol . (A=
nnnnnn - M VEMSQL  |nfiniDB
£2CMU-DB @ Od EER NN
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CONCLUSION

The storage manager is not entirely independent
from the rest of the DBMS.

[t is important to choose the right storage model

for the target workload:
— OLTP = Row Store
— OLAP = Column Store
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DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory < Next
and move data back-and-forth from disk. ex
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