
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

07 Tree Indexes
Part I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Project #1 is due Sunday Sept 27th

Homework #2 is due Sunday Oct 4th

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

UPCOMING DATABASE TALKS

CockroachDB Query Optimizer
→ Monday Sept 28th @ 5pm ET

Apache Arrow
→ Monday Oct 5th @ 5pm ET

DataBricks Query Optimizer
→ Monday Oct 12th @ 5pm ET

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-cockroachdb-optimizer/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-apache-arrow/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-databricks/

15-445/645 (Fall 2020)

DATA STRUCTURES

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TABLE INDEXES

A table index is a replica of a subset of a table's
attributes that are organized and/or sorted for
efficient access using a subset of those attributes.

The DBMS ensures that the contents of the table
and the index are logically in sync.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TABLE INDEXES

It is the DBMS's job to figure out the best
index(es) to use to execute each query.

There is a trade-off on the number of indexes to
create per database.
→ Storage Overhead
→ Maintenance Overhead

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TODAY'S AGENDA

B+Tree Overview

Using B+Trees in a DBMS

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=319663

15-445/645 (Fall 2020)

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE

A B+Tree is a self-balancing tree data
structure that keeps data sorted and
allows searches, sequential access,
insertions, and deletions in O(log n).
→ Generalization of a binary search tree in

that a node can have more than two
children.

→ Optimized for systems that read and write
large blocks of data.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?doid=356770.356776

15-445/645 (Fall 2020)

B+TREE PROPERTIES

A B+Tree is an M-way search tree with the
following properties:
→ It is perfectly balanced (i.e., every leaf node is at the same

depth in tree).
→ Every node other than the root, is at least half-full

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE EXAMPLE

11

Leaf Nodes

<5 <9 ≥9

Inner Node

<value>|<key>

Sibling Pointers

6 7 9 131 3

5 9<node*>|<key>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NODES

Every B+Tree node is comprised of an array of
key/value pairs.
→ The keys are derived from the attributes(s) that the index

is based on.
→ The values will differ based on whether the node is

classified as inner nodes or leaf nodes.

The arrays are (usually) kept in sorted key order.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+Tree Leaf Node

B+TREE LEAF NODES

13

K1 V1 • • • Kn Vn¤ ¤
Prev Next

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+Tree Leaf Node

B+TREE LEAF NODES

13

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+Tree Leaf Node

B+TREE LEAF NODES

13

Key+ Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+Tree Leaf Node

B+TREE LEAF NODES

13

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values

¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

LEAF NODE VALUES

Approach #1: Record Ids
→ A pointer to the location of the tuple that

the index entry corresponds to.

Approach #2: Tuple Data
→ The actual contents of the tuple is stored

in the leaf node.
→ Secondary indexes must store the record

id as their values.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys +
values in all nodes in the tree.
→ More space efficient since each key only appears once in

the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.

Example: Index on <a,b,c>
→ Supported: (a=5 AND b=3)
→ Supported: (b=3).

Not all DBMSs support this.

For hash index, we must have all attributes in
search key.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTION CONDITIONS

17

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

A ≤ A
B ≤ C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTION CONDITIONS

17

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*) A ≤ A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTION CONDITIONS

17

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*) A ≤ A

(A,*) ≤ (B,*)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECTION CONDITIONS

17

Find Key=(A,B)

Find Key=(*,A) A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

,A < C,CFind Key=(A,)

(A,A) (B,A)(A,A)
(B,A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE INSERT

Find correct leaf node L.
Put data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

18

Source: Chris Re

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2020)

B+TREE VISUALIZATION

https://cmudb.io/btree

Source: David Gales (Univ. of San Francisco)

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://cmudb.io/btree
https://www.cs.usfca.edu/~galles/

15-445/645 (Fall 2020)

B+TREE DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

20

Source: Chris Re

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2020)

B+TREE DUPLICATE KEYS

Approach #1: Append Record Id
→ Add the tuple's unique record id as part of the key to

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain

the duplicate keys.
→ This is more complex to maintain and modify.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE APPEND RECORD ID

22

<5 <9 ≥9

6 7 8 9 131 3

5 9
Insert 6

<Key,RecordId>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE APPEND RECORD ID

22

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE APPEND RECORD ID

22

<5

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE OVERFLOW LEAF NODES

23

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE OVERFLOW LEAF NODES

23

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

B+TREE OVERFLOW LEAF NODES

23

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will

automatically make a hidden row id primary key.

Other DBMSs cannot use them at all.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CLUSTERED B+TREE

Traverse to the left-most leaf page,
and then retrieve tuples from all leaf
pages.

This will always better than external
sorting.

25

Data Records

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HEAP CLUSTERING

Tuples are sorted in the heap's pages
using the order specified by a
clustering index.

If the query accesses tuples using the
clustering index's attributes, then the
DBMS can jump directly to the pages
that it needs.

26

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HEAP CLUSTERING

Tuples are sorted in the heap's pages
using the order specified by a
clustering index.

If the query accesses tuples using the
clustering index's attributes, then the
DBMS can jump directly to the pages
that it needs.

26

101 102 103 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their page id.

27

101 102 103 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their page id.

27

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their page id.

27

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DEMO

B+Tree vs. Hash Indexes

Table Clustering

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

The venerable B+Tree is always a good choice for
your DBMS.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NEXT CL ASS

More B+Trees

Tries / Radix Trees

Inverted Indexes

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

