Carnegie Mellon University

~ ,_”‘; N

-~

12 Query Executlon
— Part |

15-445/15-645 Computer Science
Ny @ Fall 2020 Carnegie Mellon University

o Intro to Database Systems Andy Pavlo
X AP

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #3 is due Sun Oct 18" @ 11:59pm

Mid-Term Exam is Wed Oct 215t

— Morning Session: 9:00am ET
— Afternoon Session: 3:20pm ET

Project #2 is due Sun Oct 25" @ 11:59pm

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PROJECTS

Write your own tests.

Practice defensive programming.

Profile your code to find performance problems.

Do not use Gradescope for debugging.
Do not directly email TAs for help.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://swc-osg-workshop.github.io/2017-05-17-JLAB/novice/python/05-defensive.html

QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.

The output of the root node is the
result of the query.

£SCMU-DB

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.1d = S.1id
WHERE S.value > 100

G value>100
N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

Processing Models
Access Methods
Modification Queries
Expression Evaluation

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PROCESSING MODEL

A DBMS's processing model defines how the

system executes a query plan.
— Different trade-offs for different workloads.

Approach #1: Iterator Model

Approach #2: Materialization Model
Approach #3: Vectorized / Batch Model

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ITERATOR MODEL

Each query plan operator implements a Next

function.

— On each invocation, the operator returns either a single
tuple or a null marker if there are no more tuples.

— The operator implements a loop that calls next on its
children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ITERATOR MODEL

: : SELECT R.id, S.cdate
Next() |for t hild.Next():)
O o i childmet O FROM R JOIN S

e . .
..'... ON R.ld = S.ld
ol
Next() [for & in TeftNext(): ~.,h_.WHERE S.value > 100
buildHashTable(t,) e
for t, in right.Next(): €'~.. ."": R.id, S.value
if probe(t,): emit(t,Mt,) "~... T

a,y
....'NR id=s.id
Next() |for t in child.Next(): < : :
oy

if evalPred(t): emit(t)

Next() |for t in R: Next() |for t in s: \
emit(t) emit(t) <.....ll.|.llRllllll s
$2CMU-DB - =

L]
15-445/645 (Fall 2020) S I EEERN

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ITERATOR MODE

for t in child.Next():
emit(proj*ction(t))

)

ba=left.Next():
dHashTableft,)

t, in right.lgext():

if probe(t,): pmit(t,Xt,)

- for t in child.Next():
Suuﬂe]%qﬂel if evalPred(t): emit(t)

for t

for t in R: for t in S:
emit(t)=— emit(t)

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.1d = S.1id
WHERE S.value > 100

n R.id, S.value

G value>100
N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ITERATOR MODEL

SELECT R.id, S.cdate

for t in child.Next():
emit(proj*ctiontt)) FROM R JOIN S
\ \ ON R.id = S.1id
for t, in left.Next(): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Next()eq——_ TC R.id, S.value

if probe((&w \ T
t><1Rid

for t in child.Next(): | .1d=S.1d
if evalPrdd(t):femit(t) N
x Gvalue>100

for t in R: for t inj: \
emit(t) emit(t R s

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ITERATOR MODEL

This is used in almost every DBMS. Allows for
tuple pipelining.

Some operators must block until their children

emit all their tuples.
— Joins, Subqueries, Order By

Output control works easily with this approach.

WioLie Omonsons & nuone cloudera

e Z80Lserver (7) Greenplum @PostgesQl. ORACLE D\MySQL.

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

10

MATERIALIZATION MODEL

Each operator processes its input all at once and

then emits its output all at once.

— The operator "materializes" its output as a single result.

— The DBMS can push down hints into to avoid scanning
too many tuples.

— Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MATERIALIZATION MODEL

out = [1]
for t in child.Output(): .
out. add(projection(t)) SELECT R.id, S.cdate
return out FROM R JOIN S
P— ON R.id = S.1id
out =
for t, in left.Output(): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Output(): R.id. S.val
if probe(t,): out.add(t,>t,) TU =14, s.value
return out T
P——— D<]r- i¢-s. 1
for t in child.Output(): ‘\\\
if evalPred(t): out.add(t)
return out Gvalue>1@@
out = [] out = [] \
for t in R: for t in S: R s
out.add(t) out.add(t)
§=CMuU-DB return out return out

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MATERIALIZATION MODEL

out = [1]
for t in child.Output(): .
e< out. add(projection(t)) SELECT R.id, S.cdate
TETUP Dréa FROM R JOIN S
3 ON R.id = S.id
out = [] WHERE S 1 > 100
for t, in left.Output(): -value
buildHashTable(t,
for t, in right.Output(): :
if probe(t,): out]add(tbdt,) TU =14, s.value
return out T
J
— [] NRld=S id
fgr t in child.Output(): ‘\\\
if evalPred(t): out.add(t)
L A_llTuples l return out Gvalue>1 00

out = [1] out = [1 \
for t in R: for t in S: R s
out.add(t) out.add(t)

§=CMU-DB return out-——"/ return out

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MATERIALIZATION MODEL

out = [1]
for t in child.Output(): .

9< °Ut-;dd(pl1'0jec: o:(t)) SELECT R.1id, S.cdate
TETUP Dréa FROM R JOIN S

—f ON R.id = S.id

out = [1]
for t, in left.Output(): WHERE S.value > 100
buildHashTablet,)

+for t, in right
(if probe(t,)/
return ou

n R.id, S.value

:Tout.add(

G value>100
N

!

out = [] out = []
for t in R: for t in Sjl

out.add(t) out.add(

§=CMU-DB return out return out

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MATERIALIZATION MODEL

Better for OLTP workloads because queries only

access a small number of tuples at a time.
— Lower execution / coordination overhead.
— Fewer function calls.

Not good for OLAP queries with large
intermediate results.

v

monetdb) VO LTbB

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

13

VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a Next function in this model.

Each operator emits a batch of tuples instead of a

single tuple.

— The operator's internal loop processes multiple tuples at a
time.

— The size of the batch can vary based on hardware or
query properties.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VECTORIZATION MODEL

out = []

for t in child.Next():
out.add(projection(t))
if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

out = []
for t, in left.Next():

WHERE S.value > 100
buildHashTable(t,)
for t, in right.Next():

R.id, S.value
if probe(t,): out.add(t,Pdt,) n ' vary
if |out|>n: emit(out) T

out = []
for t in child.Next():
if evalPred(t): out.add(t)

if |out|>n: emit(out)

out = [1]
for t in R:
out.add(t)
if |out|>n: emit(out)

out = [1]
for t in S:
out.add(t)
if |out|>n: emit(out)

G value>100
N

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VECTORIZATION MODEL

out = []
for t in child.Next(): .
(out.:\dd(pll'oject)i(on(t)) SELECT R.id, S.cdate
T n: emit(out) FROM R JOIN S
p— ON R.1d = S.1id
out =
e Ffor t, in left.Next(): WHERE S.value > 100

buildHashTableft,)

if |out|>n: emit(out)

ot = [1] NR.id=S.id
.for t in child.Next(): \

< if evalPred(t): out.add(t)

‘?—ro'uﬁ%a-\emit(out) G value>100

out = [] Tuple Batch out = []
for t in R: for t in S:
out.add(t) out.add(t) R

for t, in right.Next(): g S ual
if probe(t,): ut.add.%) n .id, S.value

$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to use vectorized (SIMD)
instructions to process batches of tuples.

-O.-.O > & . db
presto . “*vectorwise n¥snowfloke HYRISE DuckDB

oracLeE [amazen

Microsoft
ZZSQL Server

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom

— Start with the root and "pull" data up from its children.
— Tuples are always passed with function calls.

Approach #2: Bottom-to-Top

— Start with leaf nodes and push data to their parents.
— Allows for tighter control of caches/registers in pipelines.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

17

ACCESS METHODS

An access method is a way that the
DBMS can access the data stored in a

table.
— Not defined in relational algebra.

Three basic approaches:

— Sequential Scan

— Index Scan

— Multi-Index / "Bitmap" Scan

£SCMU-DB

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.1d = S.1id
WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SEQUENTIAL SCAN

For each page in the table:

— Retrieve it from the buffer pool.

— [terate over each tuple and check whether
to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot
it examined.

£SCMU-DB

15-445/645 (Fall 2020)

18

for page 1n table.pages:
for t in page.tuples:
if evalPred(t):
// Do Something!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SEQUENTIAL SCAN: OPTIMIZATIONS

This is almost always the worst thing that the
DBMS can do to execute a query.

Sequential Scan Optimizations:
— Prefetching

— Buffer Pool Bypass
— Parallelization

— Heap Clustering

— Zone Maps

— Late Materialization

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ZSOL Server

ZONE MAPS

20

ORACLE

Pre-computed aggregates for the attribute values
MMEMSQL in g page. DBMS checks the zone map first to
. amazon decide whether it wants to access the page.

SELECT * FROM table
WHERE val > 600

£SCMU-DB

15-445/645 (Fall 2020)

Original Data

val
100

200

300

400

400

»

cloudera
IMPALA

® NETEZZA

Zone Map
type val
MIN 100
MAX 400
AVG 280
SUM 1400
COUNT 5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATE MATERIALIZATION

DSM DBMSs can delay stitching together tuples
until the upper parts of the query plan.

SELECT AVG(foo.c)
YAVG(foo.c) FROM foo JOIN bar

ON foo.b = bar.b
WHERE foo.a > 100
foo b=bar.b

! 3 c
/ m Offsets n n -

bar foo

§=CMU-DB)
15-445/645 (Fall 2020)

WN= O

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATE MATERIALIZATION

DSM DBMSs can delay stitching together tuples
until the upper parts of the query plan.

SELECT AVG(foo.c)

AVG(fo0.c) FROM foo JOIN bar
f ON foo.b = bar.b
D-qfoo.b=bar.b‘ Offsets WHERE foo.a > 100
t c
O oo | Offsers 0 H AR
AN 1
2
bar foo .
§=CMU-DB]

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LATE MATERIALIZATION

DSM DBMSs can delay stitching together tuples
until the upper parts of the query plan.

p y f SELECT AVG(foo.c)
AVG(foo,c)‘ Result FROM foo JOIN bar
f ON foo.b = bar.b

foo bar b Offsets WHERE foo.a > 100

/ \ a>1@® Offfsets nn
bar foo

§=CMU-DB]
15-445/645 (Fall 2020)

WN= O

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INDEX SCAN

The DBMS picks an index to find the tuples that
the query needs.

Which index to use depends on:
— What attributes the index contains
— What attributes the query references

— The attribute's value domains

— Predicate composition

— Whether the index has unique or non-unique keys

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2018/schedule.html#oct-14-2019

23

INDEX SCAN

SELECT * FROM students
Suppose that we a single table with WHERE age < 30
100 tuples and two indexes: AND dept = 'CS'

— Index #2: dept

Scenario #1 Scenario #2
There are 99 people There are 99 people in
under the age of 30 but the CS department but
only 2 people in the CS only 2 people under the

department. age of 30.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

24

MULTI-INDEX SCAN

[f there are multiple indexes that the DBMS can

use for a query:

— Compute sets of record ids using each matching index.

— Combine these sets based on the query's predicates
(union vs. intersect).

— Retrieve the records and apply any remaining predicates.

Postgres calls this Bitmap Scan.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us

25

MULTI-INDEX SCAN

With an index on age and an index
on dept,

— We can retrieve the record ids satisfying
age<30 using the first,

— Then retrieve the record ids satisfying
dept="'CS' using the second,

— Take their intersection

— Retrieve records and check
country="'US".

£SCMU-DB

15-445/645 (Fall 2020)

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MULTI-INDEX SCAN

Set intersection can be done with
bitmaps, hash tables, or Bloom filters.

AN AN

age<30 dept='CS'

record ids record ids

fetch records country="'US'

£SCMU-DB

15-445/645 (Fall 2020)

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

27

MODIFICATION QUERIES

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for checking
constraints and updating indexes.

UPDATE/DELETE:

— Child operators pass Record Ids for target tuples.
— Must keep track of previously seen tuples.

INSERT:

— Choice #1: Materialize tuples inside of the operator.
— Choice #2: Operator inserts any tuple passed in from
£2CMUDB child operators.

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

UPDATE QUERY PROBLEM

28

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next():

removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000) UPDATE peOple

insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100
WHERE salary < 1000

for t in people: Index(people.salary)

emit(t) :

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

UPDATE QUERY PROBLEM

28

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next():

removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000) UPDATE peOple

insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100
WHERE salary < 1000

for t in people: Index(people.salary)

emit(t) :

*

(999, Andy)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

UPDATE QUERY PROBLEM

28

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salary, alary, t)
updateTuple(t.salary = t.salary 1000) UPDATE people
insertIntoIndex(idx_salary, t.sala\y, t) SET salary = salary + 100

WHERE salary < 1000

for t in people: Index(people.salary)

emit(t)——" :

*

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

28

UPDATE QUERY PROBLEM

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salary, t.salary, t)=
updateTuple(t.salary = t.salary + 1000) UPDATE people
insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100

WHERE salary < 1000

for t in people: Index(people.salary)

emit(t) :

*

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

28

UPDATE QUERY PROBLEM

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next():

removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000) UPDATE peOple

insertIntoIndex(idx_salary, t.salary, t) = SET salary = salary + 100
"\| WHERE salary < 1000

for t in people: \\\\‘*Index(people.salary)
emit(t) :

*

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

28

UPDATE QUERY PROBLEM

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next():

removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000) UPDATE peOple

insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100
WHERE salary < 1000

for t in people: Index(people.salary)

emit(t) :

*

(1099, Andy)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

28

UPDATE QUERY PROBLEM

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next(): (1099, Andy)
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000) UPDATE people
insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100

WHERE salary < 1000

for t in people: Index(people.salary)

emit(t) :

*

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

28

UPDATE QUERY PROBLEM

N/ \ CREATE INDEX idx_salary
ON people (salary);

for t in child.Next(): (1199, Andy) ’
removeFromIndex(idx_salary, t.salary, t UPDATE people

updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100

WHERE salary < 1000

for t in people: Index(people.salary)

[EEE NN

*

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HALLOWEEN PROBLEM

Anomaly where an update operation changes the
physical location of a tuple, which causes a scan

operator to visit the tuple multiple times.
— Can occur on clustered tables or index scans.

First discovered by IBM researchers while
working on System R on Halloween day in 1976.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Halloween_Problem

EXPRESSION EVALUATION

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent

different expression types:
— Comparisons (=, <, >, 1=)
— Conjunction (AND), Disjunction (OR)

30

SELECT R.id, S.cdate
FROM R JOIN S

‘ ON R.id = S.id
WHERE S.value > 100

AND

— Arithmetic Operators (+, =, *, /, %)

— Constant Values
— Tuple Attribute References

/
\

B
/

\

Attribute(R.id)

Attribute(S.id)

Attribute(value)

Constant(100)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXPRESSION EVALUATION

Execution Context
SELECT x FROM S Current Tuple Query Parameters Table Schema
WHERE |IB.value = ? +1 (123, 1000) (int:999) S»(int:id, int:value)

— =

Attribute(S.value)

—

Parameter(0) Constant(1)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXPRESSION EVALUATION

Execution Context
SELECT x FROM S Current Tuple Query Parameters Table Schema
WHERE |IB.value = ? +1 (123, 1000) (int:999) S»(int:id, int:value)

-
’,—————’/ true \\—~\

Attribute(S.value)

1000 / 10@@\

Parameter(0) Constant(1)
999 1

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

32

EXPRESSION EVALUATION

Evaluating predicates in this manner

is slow. -
— The DBMS traverses the tree and for each / \

node that it visits it must figure out what
the operator needs to do. Constant(1) | | Constant(1)

Consider the predicate "WHERE 1=1"

A better approach is to just evaluate

the expression directly.
— Think JIT compilation

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONCLUSION

The same query plan be executed in multiple ways.

(Most) DBMSs will want to use an index scan as
much as possible.

Expression trees are flexible but slow.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

NEXT CLASS

Parallel Query Execution

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

