
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

12 Query Execution
Part I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Homework #3 is due Sun Oct 18th @ 11:59pm

Mid-Term Exam is Wed Oct 21st

→ Morning Session: 9:00am ET
→ Afternoon Session: 3:20pm ET

Project #2 is due Sun Oct 25th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROJECTS

Write your own tests.

Practice defensive programming.

Profile your code to find performance problems.

Do not use Gradescope for debugging.

Do not directly email TAs for help.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://swc-osg-workshop.github.io/2017-05-17-JLAB/novice/python/05-defensive.html

15-445/645 (Fall 2020)

QUERY PL AN

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.

The output of the root node is the
result of the query.

4

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TODAY'S AGENDA

Processing Models

Access Methods

Modification Queries

Expression Evaluation

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROCESSING MODEL

A DBMS's processing model defines how the
system executes a query plan.
→ Different trade-offs for different workloads.

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ITERATOR MODEL

Each query plan operator implements a Next
function.
→ On each invocation, the operator returns either a single

tuple or a null marker if there are no more tuples.
→ The operator implements a loop that calls next on its

children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

ITERATOR MODEL

8

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

Next()

Next()

Next() Next()

Next()

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

ITERATOR MODEL

8

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

1

2

3

Single Tuple

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

ITERATOR MODEL

8

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

1

2

3 5

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ITERATOR MODEL

This is used in almost every DBMS. Allows for
tuple pipelining.

Some operators must block until their children
emit all their tuples.
→ Joins, Subqueries, Order By

Output control works easily with this approach.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MATERIALIZATION MODEL

Each operator processes its input all at once and
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints into to avoid scanning

too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM)

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MATERIALIZATION MODEL

11

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:

out.add(t)
return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():
out.add(projection(t))

return out

out = []
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = []
for t in S:
out.add(t)

return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MATERIALIZATION MODEL

11

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:

out.add(t)
return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():
out.add(projection(t))

return out

out = []
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = []
for t in S:
out.add(t)

return out

1

2

3

All Tuples

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MATERIALIZATION MODEL

11

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:

out.add(t)
return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():
out.add(projection(t))

return out

out = []
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = []
for t in S:
out.add(t)

return out

1

2

3 5

4

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MATERIALIZATION MODEL

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large
intermediate results.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a Next function in this model.

Each operator emits a batch of tuples instead of a
single tuple.
→ The operator's internal loop processes multiple tuples at a

time.
→ The size of the batch can vary based on hardware or

query properties.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VECTORIZATION MODEL

14

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:

out.add(t)
if |out|>n: emit(out)

out = []
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = []
for t in child.Next():

out.add(projection(t))
if |out|>n: emit(out)

out = []
for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = []
for t in S:
out.add(t)
if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VECTORIZATION MODEL

14

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:

out.add(t)
if |out|>n: emit(out)

out = []
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = []
for t in child.Next():

out.add(projection(t))
if |out|>n: emit(out)

out = []
for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

1

2

3
out = []
for t in S:
out.add(t)
if |out|>n: emit(out)

5

4

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

Tuple Batch

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to use vectorized (SIMD)
instructions to process batches of tuples.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PL AN PROCESSING DIRECTION

Approach #1: Top-to-Bottom
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top
→ Start with leaf nodes and push data to their parents.
→ Allows for tighter control of caches/registers in pipelines.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ACCESS METHODS

An access method is a way that the
DBMS can access the data stored in a
table.
→ Not defined in relational algebra.

Three basic approaches:
→ Sequential Scan
→ Index Scan
→ Multi-Index / "Bitmap" Scan

17

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SEQUENTIAL SCAN

For each page in the table:
→ Retrieve it from the buffer pool.
→ Iterate over each tuple and check whether

to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot
it examined.

18

for page in table.pages:
for t in page.tuples:

if evalPred(t):
// Do Something!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SEQUENTIAL SCAN: OPTIMIZATIONS

This is almost always the worst thing that the
DBMS can do to execute a query.

Sequential Scan Optimizations:
→ Prefetching
→ Buffer Pool Bypass
→ Parallelization
→ Heap Clustering
→ Zone Maps
→ Late Materialization

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

ZONE MAPS

Pre-computed aggregates for the attribute values
in a page. DBMS checks the zone map first to
decide whether it wants to access the page.

20

Zone Map

val

100

400

280

1400

type

MIN
MAX
AVG
SUM

5COUNT

Original Data

val

100

200

300

400

400

SELECT * FROM table
WHERE val > 600

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATE MATERIALIZATION

DSM DBMSs can delay stitching together tuples
until the upper parts of the query plan.

21

0
1
2
3

a b c

SELECT AVG(foo.c)
FROM foo JOIN bar

ON foo.b = bar.b
WHERE foo.a > 100

bar foo

foo.b=bar.b

a>100

AVG(foo.c)

⨝
s

γ

Offsets

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATE MATERIALIZATION

DSM DBMSs can delay stitching together tuples
until the upper parts of the query plan.

21

0
1
2
3

a b c

SELECT AVG(foo.c)
FROM foo JOIN bar

ON foo.b = bar.b
WHERE foo.a > 100

bar foo

foo.b=bar.b

a>100

AVG(foo.c)

⨝
s

γ

Offsets

Offsets

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

L ATE MATERIALIZATION

DSM DBMSs can delay stitching together tuples
until the upper parts of the query plan.

21

0
1
2
3

a b c

SELECT AVG(foo.c)
FROM foo JOIN bar

ON foo.b = bar.b
WHERE foo.a > 100

bar foo

foo.b=bar.b

a>100

AVG(foo.c)

⨝
s

γ

Offsets

Offsets

Result

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX SCAN

The DBMS picks an index to find the tuples that
the query needs.

Which index to use depends on:
→ What attributes the index contains
→ What attributes the query references
→ The attribute's value domains
→ Predicate composition
→ Whether the index has unique or non-unique keys

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2018/schedule.html#oct-14-2019

15-445/645 (Fall 2020)

INDEX SCAN

Suppose that we a single table with
100 tuples and two indexes:
→ Index #1: age
→ Index #2: dept

23

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

There are 99 people
under the age of 30 but
only 2 people in the CS
department.

Scenario #1

There are 99 people in
the CS department but
only 2 people under the
age of 30.

Scenario #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-INDEX SCAN

If there are multiple indexes that the DBMS can
use for a query:
→ Compute sets of record ids using each matching index.
→ Combine these sets based on the query's predicates

(union vs. intersect).
→ Retrieve the records and apply any remaining predicates.

Postgres calls this Bitmap Scan.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us

15-445/645 (Fall 2020)

MULTI-INDEX SCAN

With an index on age and an index
on dept,
→ We can retrieve the record ids satisfying

age<30 using the first,
→ Then retrieve the record ids satisfying

dept='CS' using the second,
→ Take their intersection
→ Retrieve records and check

country='US'.

25

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-INDEX SCAN

Set intersection can be done with
bitmaps, hash tables, or Bloom filters.

26

age<30 dept='CS'

record ids record ids

country='US'fetch records

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MODIFICATION QUERIES

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for checking
constraints and updating indexes.

UPDATE/DELETE:
→ Child operators pass Record Ids for target tuples.
→ Must keep track of previously seen tuples.

INSERT:
→ Choice #1: Materialize tuples inside of the operator.
→ Choice #2: Operator inserts any tuple passed in from

child operators.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

(999,Andy)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

(999,Andy)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

(999,Andy)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

(1099,Andy)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

(1099,Andy)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CREATE INDEX idx_salary
ON people (salary);

UPDATE QUERY PROBLEM

28

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 1000)
insertIntoIndex(idx_salary, t.salary, t)

for t in people:
emit(t)

UPDATE people
SET salary = salary + 100

WHERE salary < 1000

Index(people.salary)

(1199,Andy)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HALLOWEEN PROBLEM

Anomaly where an update operation changes the
physical location of a tuple, which causes a scan
operator to visit the tuple multiple times.
→ Can occur on clustered tables or index scans.

First discovered by IBM researchers while
working on System R on Halloween day in 1976.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Halloween_Problem

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

EXPRESSION EVALUATION

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent
different expression types:
→ Comparisons (=, <, >, !=)
→ Conjunction (AND), Disjunction (OR)
→ Arithmetic Operators (+, -, *, /, %)
→ Constant Values
→ Tuple Attribute References

30

Attribute(S.id)

=

Attribute(R.id)

AND

>

Attribute(value) Constant(100)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Execution Context

EXPRESSION EVALUATION

31

SELECT * FROM S
WHERE B.value = ? + 1

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
S→(int:id, int:value)

Attribute(S.value)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

1000

999 1

true

1000

Execution Context

EXPRESSION EVALUATION

31

SELECT * FROM S
WHERE B.value = ? + 1

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
S→(int:id, int:value)

Attribute(S.value)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXPRESSION EVALUATION

Evaluating predicates in this manner
is slow.
→ The DBMS traverses the tree and for each

node that it visits it must figure out what
the operator needs to do.

Consider the predicate "WHERE 1=1"

A better approach is to just evaluate
the expression directly.
→ Think JIT compilation

32

Constant(1)

=

Constant(1)

1 = 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

The same query plan be executed in multiple ways.

(Most) DBMSs will want to use an index scan as
much as possible.

Expression trees are flexible but slow.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NEXT CL ASS

Parallel Query Execution

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

