Carnegie Mellon University

~ ,_”‘; N

-~

13 Query Executlon
— Part ||

15-445/15-645 Computer Science
Ny @ Fall 2020 Carnegie Mellon University

o Intro to Database Systems Andy Pavlo
X AP

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #3 is due Sun Oct 18® @ 11:59pm

Mid-Term Exam is Wed Oct 215t

— Morning Session: 9:00am ET
— Afternoon Session: 3:20pm ET

Project #2 is due Sun Oct 25" @ 11:59pm

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

QUERY EXECUTION

W e discussed last class how to
compose operators together to
execute a query plan.

We assumed that the queries execute
with a single worker (e.g., thread).

We now need to talk about how to
execute with multiple workers...

£SCMU-DB

15-445/645 (Fall 2020)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.1d = S.1id
WHERE S.value > 100

G value>100
N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

WHY CARE ABOUT PARALLEL EXECUTION?

Increased performance.
— Throughput
— Latency

Increased responsiveness and availability.

Potentially lower total cost of ownership (TCO).

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PARALLEL VS. DISTRIBUTED

Database is spread out across multiple resources
to improve different aspects of the DBMS.

Appears as a single database instance to the

application.
— SQL query for a single-resource DBMS should generate
same result on a parallel or distributed DBMS.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PARALLEL VS. DISTRIBUTED

Parallel DBMSs:

— Resources are physically close to each other.
— Resources communicate with high-speed interconnect.
— Communication is assumed to cheap and reliable.

Distributed DBMSs:

— Resources can be far from each other.
— Resources communicate using slow(er) interconnect.
— Communication cost and problems cannot be ignored.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

Process Models

Execution Parallelism
I/O Parallelism

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PROCESS MODEL

A DBMS'’s process model defines how the system
is architected to support concurrent requests from
a multi-user application.

A worker is the DBMS component that is
responsible for executing tasks on behalf of the
client and returning the results.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PROCESS MODELS

Approach #1: Process per DBMS Worker

Approach #2: Process Pool

Approach #3: Thread per DBMS Worker

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

10

PROCESS PER WORKER

Each worker is a separate OS process.

— Relies on OS scheduler. ORACLE
— Use shared-memory for global data structures.
— A process crash doesn’t take down entire system. PostgreSQL

— Examples: IBM DB2, Postgres, Oracle

-—
—

—

Dispatcher Worker

a——
—)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

11

PROCESS POOL

A worker uses any process that is free in a pool

— Still relies on OS scheduler and shared memory. PostgreSQL
— Bad for CPU cache locality.

— Examples: IBM DB2, Postgres (2015)

Dispatcher \Vorker Pool @

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

12

THREAD PER WORKER

= I

Single process with multiple worker threads. @ORACLE
— DBMS manages its own scheduling.):SJall M
— May or may not use a dispatcher thread. & SQL Server
— Thread crash (may) kill the entire system. RMHSQLW
— Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)

ERADATA

(0
(0
(0

f—
—

a——
—)

(0
(0
(0

Worker Threads

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PROCESS MODELS

Using a multi-threaded architecture has several

advantages:
— Less overhead per context switch.
— Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

Andy is not aware of any new DBMS from last 10
years that doesn’t use threads unless they are Redis
or Postgres forks.

§=CMuU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SCHEDULING

For each query plan, the DBMS decides where,

when, and how to execute it.

— How many tasks should it use?

— How many CPU cores should it use?

— What CPU core should the tasks execute on?
— Where should a task store its output?

The DBMS always knows more than the OS.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15

SQL SERVER - SQLOS

SQLOS is a user-level OS layer that runs inside of
the DBMS and manages provisioned hardware

resources.

— Determines which tasks are scheduled onto which
threads.

— Also manages I/O scheduling and higher-level concepts
like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

£2CMU-DB

15-445/645 (Fall 2020)

SQL

SQLOS is a us

the DBMS a

resources.

— Determines
threads.

— Also manag
like logical ¢

Non-preemg
Instrumente

TS

Login
Search q
Startups
Videos
Audio
Newsletters
Extra Crunch
Advertise
Events

More

Transportation
Apple

Tesla

Security

How Microsoft brought
SQL Server to Linux

Frederic Lardinois @freqe icl / 12:00 pmEDT » July 17,2017 7 comment

Back in 2016, when Microsoft announced that SQL Server would soon run on Linux, the
news came as g major surprise to users and pundits alike. Over the course of the last year,
Microsoft's Support for Linux (and open source in general), has come into clearer focus and

noticed many enterprises were starting to use SQL Server for their mission-critical workloads.
But at the same fime, they were also working in mixed environments that included both
Windows Server and Linux. For many of these businesses, not being able to run their
database of choice on Linux became a friction point.

forcing customers to use Windows as their platform of choice.” In another incarnation of
Microsoft, that probably would've been seen as something positive, but the company's
strategy today is quite different,

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://techcrunch.com/2017/07/17/how-microsoft-brought-sql-server-to-linux/

SQL SERVER - SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add

explicit yield calls in various
locations in the source code.

£SCMU-DB

15-445/645 (Fall 2020)

SELECT * FROM A WHERE A.val = ?

Approximate Plan

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SQL SERVER — SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add

explicit yield calls in various
locations in the source code.

£SCMU-DB

15-445/645 (Fall 2020)

SELECT * FROM A WHERE A.val = ?

last = now()
for t in range(table.num_tuples):
tuple = get_tuple(table, t)

if eval(predicate, tuple, params):

emit(tuple)
if now() - last > 4ms:
yield

last = now()

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTER- VS. INTRA-QUERY PARALLELISM

Inter-Query: Different queries are executed

concurrently.
— Increases throughput & reduces latency.

Intra-Query: Execute the operations of a single

query in parallel.
— Decreases latency for long-running queries.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.

[f queries are read-only, then this requires little
coordination between queries.

Lecture 16

[f multiple queries are updating the database at the

same time, then this is hard to do correctly...

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#oct-23-2019

19

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Think of organization of operators in terms of a
producer/consumer paradigm.

There are parallel algorithms for every relational

operator.
— Can either have multiple threads access centralized data
structures or use partitioning to divide work up.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

20

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

R(id,name) . HT,

£SCMU-DB

15-445/645 (Fall 2020)

max

HT,

E S(id,value,cdate)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

20

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

R(id, name)

E S(id,value,cdate)

max

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)
Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
— Decompose operators into independent fragments that
perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple
children/parent operators.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT * FROM A
WHERE A.value > 99

Gvalue>99

T
A

§=CMU-DB
15-445/645 (Fall 2020)

Fragment

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT * FROM A
WHERE A.value > 99

Gvalue>99

T
A

§=CMU-DB
15-445/645 (Fall 2020)

Next Exchange

?)Next A

7
A

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT * FROM A
WHERE A.value > 99

Gvalue>99

T
A

§=CMU-DB
15-445/645 (Fall 2020)

Next

Exchange I

?)Next ?) ?)

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

Exchange
SELECT * FROM A

WHERE A.value > 99 ?

A

Gvalue>99

T
A

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT * FROM A
WHERE A.value > 99

Gvalue>99

T
A

§=CMU-DB
15-445/645 (Fall 2020)

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EXCHANGE OPERATOR

Exchange Type #1 — Gather
— Combine the results from multiple
workers into a single output stream.

Exchange Type #2 — Distribute

— Split a single input stream into multiple
output streams.

Exchange Type #3 — Repartition
— Shuffle multiple input streams across
multiple output streams.
Source: Craig Freedman

£SCMU-DB

15-445/645 (Fall 2020)

Repartition

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

T
t

N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

N
O| O
N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.1id
WHERE A.value < 99
AND B.value > 100 ’t><1

Exchange

BuildHT @ BuildHT W BuildHT

>
—

N
G| o
el N
|[A_| B

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100 ’t><1

Exchange

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100 ’t><1

Exchange

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

TC

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B Exchange
ON A.id = B.1id
WHERE A.value < 99
AND B.value > 100 <
Exchange T T

TC

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)

— Operations are overlapped in order to pipeline data from
one stage to the next without materialization.

— Workers execute multiple operators from different
segments of a query plan at the same time.

— Still need exchange operators to combine intermediate
results from segments.

Also called pipelined parallelism.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTER-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

TC

G G for r, € outer:
P - #N for r, € inner:

A B emit(r,Pdr,)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INTER-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

X

for r € incoming:
emit(7mr)

K

for r, € outer:

N
/G G\ for r, € inner:

A B emit(r,Pdr,)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BUSHY PARALLELISM

Approach #3: Bushy Parallelism

— Extension of inter-operator parallelism —

where workers execute multiple operators N
from different segments of a query plan at —|I 4
the same time. -
— Still need exchange operators to combine
intermediate results from segments. N
SELECT * N
FROM A JOIN B JOIN C JOIN D B

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OBSERVATION

Using additional processes/threads to execute
queries in parallel won't help if the disk is always

the main bottleneck.
— Can make things worse if each worker is reading
different segments of disk.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

1/O PARALLELISM

Split the DBMS installation across multiple storage

devices.

— Multiple Disks per Database

— One Database per Disk

— One Relation per Disk

— Split Relation across Multiple Disks

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

32

MULTI-DISK PARALLELISM

Configure OS/hardware to store the
DBMS's files across multiple storage

devices.
— Storage Appliances 1

— RAID Configuration
page1 page2 page3

This is transparent to the DBMS. page4 page5 page6

QQQ

RAID 0 (Stripping)

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

32

MULTI-DISK PARALLELISM

Configure OS/hardware to store the
DBMS's files across multiple storage

devices.
— Storage Appliances 1

— RAID Configuration
page1 page1 page1

This is transparent to the DBMS. page2 page2 page2

QEQ

RAID 1 (Mirroring)

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

33

DATABASE PARTITIONING

Some DBMSs allow you specify the disk location

of each individual database.
— The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the

DBMS stores each database in a separate directory.
— The DBMS recovery log file might still be shared if
transactions can update multiple databases.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PARTITIONING

Split single logical table into disjoint physical
segments that are stored/managed separately.

[deally partitioning is transparent to the

application.
— The application accesses logical tables and does not care
how things are stored.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VERTICAL PARTITIONING

Store a table’s attributes in a separate
location (e.g., file, disk volume).

Must store tuple information to
reconstruct the original record.

35

CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tuplei1 attri attr2 attr3 attr4
Tuple#2 attri attr2 attr3 attr4
Tupleit3 attri attr2 attr3 attr4
Tuplei4 attri attr2 attr3 attr4

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VERTICAL PARTITIONING

Store a table’s attributes in a separate
location (e.g., file, disk volume).

Must store tuple information to
reconstruct the original record.

Partition #1
Tuplei1 attri attr2 attr3
Tuple#2 attri attr2 attr3
Tupleit3 attri attr2 attr3
Tupleits attri attr2 attr3

£SCMU-DB

15-445/645 (Fall 2020)

35

CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tupleiti
Tuple#2
Tupleit3

Tuple#4

Partition #2

attr4

attr4

attr4

attr4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HORIZONTAL PARTITIONING

CREATE TABLE foo (
Divide the tuples of a table up into attr1 INT,
disjoint segments based on some attr2 INT,
L attr3 INT,
partitioning key. attrd TEXT
— Hash Partitioning)

— Range Partitioning
— Predicate Partitioning

Tupleiti attri attr2 attr3 attr4
Tuplei#2 attri attr2 attr3 attr4
Tuple#3 attri attr2 attr3 attr4
Tupleits4 attri attr2 attr3 attr4

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HORIZONTAL PARTITIONING

Divide the tuples of a table up into
disjoint segments based on some
partitioning key.

— Hash Partitioning

— Range Partitioning
— Predicate Partitioning

Partition #1
Tupleiti attri attr2 attr3 attr4
Tuplei#2 attr attr2 attr3 attr4

£SCMU-DB

15-445/645 (Fall 2020)

Tuple#3

Tuplei4

36

);

attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

CREATE TABLE foo (

Partition #2

attri

attr2 attr3

attr4

attri

attr2 attr3

attr4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONCLUSION

Parallel execution is important.
(Almost) every DBMS support this.

This is hard to get right.
— Coordination Overhead
— Scheduling

— Concurrency Issues

— Resource Contention

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MIDTERM EXAM

Who: You

What: Midterm Exam

Where: Gradescope

When: Wed Oct 215t (Two Sessions)
Why: https://youtu.be/EDRsQQ60nnw

https://15445.courses.cs.cmu.edu/fall2020/midter
m-guide.html

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://youtu.be/EDRsQQ6Onnw
https://15445.courses.cs.cmu.edu/fall2019/midterm-guide.html

MIDTERM EXAM

Two Exam Sessions:

— Session #1: Wed Oct 21 @ 9:00am ET
— Session #2: Wed Oct 21°* @ 3:20pm ET
— T will email you to confirm your session.

Exam will be available on Gradescope.

Please email Andy if you need special
accommodations.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MIDTERM EXAM

Exam covers all lecture material up to today
(inclusive).

Open book/notes/calculator.

You are not required to turn on your video during
the video.

We will answer clarification questions via OHQ.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

RELATIONAL MODEL

Integrity Constraints
Relation Algebra

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SQL

Basic operations:
— SELECT / INSERT / UPDATE / DELETE

— WHERE predicates
— Output control

More complex operations:
— Joins

— Aggregates

— Common Table Expressions

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

STORAGE

Buffer Management Policies
— LRU / MRU / CLOCK

On-Disk File Organization
— Heaps
— Linked Lists

Page Layout
— Slotted Pages
— Log-Structured

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HASHING

Static Hashing

— Linear Probing
— Robin Hood
— Cuckoo Hashing

Dynamic Hashing
— Extendible Hashing
— Linear Hashing

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TREE INDEXES

B+Tree

— Insertions / Deletions

— Splits / Merges

— Difference with B-Tree

— Latch Crabbing / Coupling

Radix Trees

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SORTING

Two-way External Merge Sort
General External Merge Sort

Cost to sort different data sets with different
number of buffers.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

£SCMU-DB

15-445/645 (Fall 2020)

JOINS

Nested Loop Variants
Sort-Merge
Hash

Execution costs under different conditions.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

QUERY PROCESSING

Processing Models
— Advantages / Disadvantages

Parallel Execution
— Inter- vs. Intra-Operator Parallelism

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

NEXT CLASS

Query Planning & Optimization

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

