
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

13 Query Execution
Part II

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Homework #3 is due Sun Oct 18th @ 11:59pm

Mid-Term Exam is Wed Oct 21st

→ Morning Session: 9:00am ET
→ Afternoon Session: 3:20pm ET

Project #2 is due Sun Oct 25th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

QUERY EXECUTION

We discussed last class how to
compose operators together to
execute a query plan.

We assumed that the queries execute
with a single worker (e.g., thread).

We now need to talk about how to
execute with multiple workers…

3

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

WHY CARE ABOUT PARALLEL EXECUTION?

Increased performance.
→ Throughput
→ Latency

Increased responsiveness and availability.

Potentially lower total cost of ownership (TCO).

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PARALLEL VS. DISTRIBUTED

Database is spread out across multiple resources
to improve different aspects of the DBMS.

Appears as a single database instance to the
application.
→ SQL query for a single-resource DBMS should generate

same result on a parallel or distributed DBMS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PARALLEL VS. DISTRIBUTED

Parallel DBMSs:
→ Resources are physically close to each other.
→ Resources communicate with high-speed interconnect.
→ Communication is assumed to cheap and reliable.

Distributed DBMSs:
→ Resources can be far from each other.
→ Resources communicate using slow(er) interconnect.
→ Communication cost and problems cannot be ignored.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TODAY'S AGENDA

Process Models

Execution Parallelism

I/O Parallelism

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROCESS MODEL

A DBMS’s process model defines how the system
is architected to support concurrent requests from
a multi-user application.

A worker is the DBMS component that is
responsible for executing tasks on behalf of the
client and returning the results.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROCESS MODELS

Approach #1: Process per DBMS Worker

Approach #2: Process Pool

Approach #3: Thread per DBMS Worker

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ A process crash doesn’t take down entire system.
→ Examples: IBM DB2, Postgres, Oracle

10

Dispatcher Worker

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROCESS POOL

A worker uses any process that is free in a pool
→ Still relies on OS scheduler and shared memory.
→ Bad for CPU cache locality.
→ Examples: IBM DB2, Postgres (2015)

11

Worker PoolDispatcher

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)

12

Worker Threads

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PROCESS MODELS

Using a multi-threaded architecture has several
advantages:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

Andy is not aware of any new DBMS from last 10
years that doesn’t use threads unless they are Redis
or Postgres forks.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SCHEDULING

For each query plan, the DBMS decides where,
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SQL SERVER SQLOS

SQLOS is a user-level OS layer that runs inside of
the DBMS and manages provisioned hardware
resources.
→ Determines which tasks are scheduled onto which

threads.
→ Also manages I/O scheduling and higher-level concepts

like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SQL SERVER SQLOS

SQLOS is a user-level OS layer that runs inside of
the DBMS and manages provisioned hardware
resources.
→ Determines which tasks are scheduled onto which

threads.
→ Also manages I/O scheduling and higher-level concepts

like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://techcrunch.com/2017/07/17/how-microsoft-brought-sql-server-to-linux/

15-445/645 (Fall 2020)

SQL SERVER SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

16

SELECT * FROM A WHERE A.val = ?

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

Approximate Plan

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SQL SERVER SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

16

SELECT * FROM A WHERE A.val = ?

last = now()
for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)
if now() – last > 4ms:

yield
last = now()

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTER- VS. INTRA-QUERY PARALLELISM

Inter-Query: Different queries are executed
concurrently.
→ Increases throughput & reduces latency.

Intra-Query: Execute the operations of a single
query in parallel.
→ Decreases latency for long-running queries.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.

If queries are read-only, then this requires little
coordination between queries.

If multiple queries are updating the database at the
same time, then this is hard to do correctly…

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#oct-23-2019

15-445/645 (Fall 2020)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Think of organization of operators in terms of a
producer/consumer paradigm.

There are parallel algorithms for every relational
operator.
→ Can either have multiple threads access centralized data

structures or use partitioning to divide work up.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

20

h1
⋮

HTR

h1

R(id,name)

⋮

HTS
0
1
2

max

S(id,value,cdate)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

20

h1
⋮

HTR

h1

R(id,name)

⋮

HTS
0
1
2

max

S(id,value,cdate)1

2

3

n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Decompose operators into independent fragments that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple
children/parent operators.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-OPERATOR PARALLELISM

23

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

Fragment

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-OPERATOR PARALLELISM

23

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

Next

Next

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-OPERATOR PARALLELISM

23

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

Next

Next

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-OPERATOR PARALLELISM

23

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTRA-OPERATOR PARALLELISM

23

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

EXCHANGE OPERATOR

Exchange Type #1 – Gather
→ Combine the results from multiple

workers into a single output stream.

Exchange Type #2 – Distribute
→ Split a single input stream into multiple

output streams.

Exchange Type #3 – Repartition
→ Shuffle multiple input streams across

multiple output streams.

24

Source: Craig Freedman

Gather

Operator Operator Operator

Repartition

Operator Operator Operator

Operator Operator

Operator Operator Operator

Distribute

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3
1 2 3A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3
1 2 3A B

⨝
s

p

s
s s s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3
1 2 3A B

⨝
s

p

s
s s s
p p p

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

⨝

p p p

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

⨝

p p p

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

⨝

p p p p p p

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

INTRA-OPERATOR PARALLELISM

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange
SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from

one stage to the next without materialization.
→ Workers execute multiple operators from different

segments of a query plan at the same time.
→ Still need exchange operators to combine intermediate

results from segments.

Also called pipelined parallelism.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTER-OPERATOR PARALLELISM

1 ⨝
for r1 ∊ outer:
for r2 ∊ inner:
emit(r1⨝r2)A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INTER-OPERATOR PARALLELISM

1 ⨝
for r1 ∊ outer:
for r2 ∊ inner:
emit(r1⨝r2)

2 p for r ∊ incoming:
emit(pr)

A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

BUSHY PARALLELISM

Approach #3: Bushy Parallelism
→ Extension of inter-operator parallelism

where workers execute multiple operators
from different segments of a query plan at
the same time.

→ Still need exchange operators to combine
intermediate results from segments.

29

SELECT *
FROM A JOIN B JOIN C JOIN D A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

3 4

1 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

OBSERVATION

Using additional processes/threads to execute
queries in parallel won't help if the disk is always
the main bottleneck.
→ Can make things worse if each worker is reading

different segments of disk.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

I /O PARALLELISM

Split the DBMS installation across multiple storage
devices.
→ Multiple Disks per Database
→ One Database per Disk
→ One Relation per Disk
→ Split Relation across Multiple Disks

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-DISK PARALLELISM

Configure OS/hardware to store the
DBMS's files across multiple storage
devices.
→ Storage Appliances
→ RAID Configuration

This is transparent to the DBMS.

32

page1

page4

page2

page5

page3

page6

RAID 0 (Stripping)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-DISK PARALLELISM

Configure OS/hardware to store the
DBMS's files across multiple storage
devices.
→ Storage Appliances
→ RAID Configuration

This is transparent to the DBMS.

32

page2

page1

page2

page1

page2

page1

RAID 1 (Mirroring)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DATABASE PARTITIONING

Some DBMSs allow you specify the disk location
of each individual database.
→ The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the
DBMS stores each database in a separate directory.
→ The DBMS recovery log file might still be shared if

transactions can update multiple databases.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PARTITIONING

Split single logical table into disjoint physical
segments that are stored/managed separately.

Ideally partitioning is transparent to the
application.
→ The application accesses logical tables and does not care

how things are stored.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERTICAL PARTITIONING

Store a table’s attributes in a separate
location (e.g., file, disk volume).

Must store tuple information to
reconstruct the original record.

35

Tuple#1

Tuple#2

Tuple#3

Tuple#4

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr4

attr4

attr4

attr4

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERTICAL PARTITIONING

Store a table’s attributes in a separate
location (e.g., file, disk volume).

Must store tuple information to
reconstruct the original record.

35

Tuple#1

Tuple#2

Tuple#3

Tuple#4

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr4

attr4

attr4

attr4

Tuple#1

Tuple#2

Tuple#3

Tuple#4

Partition #1 Partition #2

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HORIZONTAL PARTITIONING

Divide the tuples of a table up into
disjoint segments based on some
partitioning key.
→ Hash Partitioning
→ Range Partitioning
→ Predicate Partitioning

36

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#1

Tuple#2

attr4

attr4

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#3

Tuple#4

attr4

attr4

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HORIZONTAL PARTITIONING

Divide the tuples of a table up into
disjoint segments based on some
partitioning key.
→ Hash Partitioning
→ Range Partitioning
→ Predicate Partitioning

36

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#1

Tuple#2

attr4

attr4

attr1 attr2 attr3

attr1 attr2 attr3

Tuple#3

Tuple#4

attr4

attr4

Partition #1 Partition #2

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCLUSION

Parallel execution is important.

(Almost) every DBMS support this.

This is hard to get right.
→ Coordination Overhead
→ Scheduling
→ Concurrency Issues
→ Resource Contention

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MIDTERM EXAM

Who: You

What: Midterm Exam

Where: Gradescope

When: Wed Oct 21st (Two Sessions)

Why: https://youtu.be/EDRsQQ6Onnw

https://15445.courses.cs.cmu.edu/fall2020/midter
m-guide.html

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://youtu.be/EDRsQQ6Onnw
https://15445.courses.cs.cmu.edu/fall2019/midterm-guide.html

15-445/645 (Fall 2020)

MIDTERM EXAM

Two Exam Sessions:
→ Session #1: Wed Oct 21st @ 9:00am ET
→ Session #2: Wed Oct 21st @ 3:20pm ET
→ I will email you to confirm your session.

Exam will be available on Gradescope.

Please email Andy if you need special
accommodations.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MIDTERM EXAM

Exam covers all lecture material up to today
(inclusive).

Open book/notes/calculator.

You are not required to turn on your video during
the video.

We will answer clarification questions via OHQ.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

REL ATIONAL MODEL

Integrity Constraints

Relation Algebra

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SQL

Basic operations:
→ SELECT / INSERT / UPDATE / DELETE
→ WHERE predicates
→ Output control

More complex operations:
→ Joins
→ Aggregates
→ Common Table Expressions

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

STORAGE

Buffer Management Policies
→ LRU / MRU / CLOCK

On-Disk File Organization
→ Heaps
→ Linked Lists

Page Layout
→ Slotted Pages
→ Log-Structured

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HASHING

Static Hashing
→ Linear Probing
→ Robin Hood
→ Cuckoo Hashing

Dynamic Hashing
→ Extendible Hashing
→ Linear Hashing

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TREE INDEXES

B+Tree
→ Insertions / Deletions
→ Splits / Merges
→ Difference with B-Tree
→ Latch Crabbing / Coupling

Radix Trees

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SORTING

Two-way External Merge Sort

General External Merge Sort

Cost to sort different data sets with different
number of buffers.

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

JOINS

Nested Loop Variants

Sort-Merge

Hash

Execution costs under different conditions.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

QUERY PROCESSING

Processing Models
→ Advantages / Disadvantages

Parallel Execution
→ Inter- vs. Intra-Operator Parallelism

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NEXT CL ASS

Query Planning & Optimization

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

