Carnegie Mellon University

1

o Intro to Database Systems Andy Pavlo
X AP

15-445/15-645 Computer Science
Ny @ Fall 2020 Carnegie Mellon University

4
o e
N \
/‘,.”"'

-~

LY = O [

Timestamp Ordering
Concurrency Control

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #3 is due Sun Nov 22™ @ 11:59pm.

Homework #4 is due Sun Nov 8™ @ 11:59pm.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

UPCOMING DATABASE TALKS

EraDB "Magical Indexes"
— Monday Nov 9" @ 5pm ET

FaunaDB Serverless DBMS
— Monday Nov 16" @ 5pm ET

Confluent ksqlDB (Kafka)) CONFLUENT
— Monday Nov 16" @ 5pm ET

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-eradb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-faunadb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-confluent-ksqldb-a-stream-relational-database-system/

CONCURRENCY CONTROL APPROACHES

Two-Phase Locking (2PL) o
— Determine serializability order of conflicting Pessimastic

operations at runtime while txns execute.

Timestamp Ordering (T/O) L.
— Determine serializability order of txns before 0ptmustlc

they execute.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

T/0 CONCURRENCY CONTROL

Use timestamps to determine the serializability
order of txns.

[fTS(T;) < TS(T;), then the DBMS must ensure
that the execution schedule is equivalent to a serial
schedule where T; appears before T..

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TIMESTAMP ALLOCATION

Each txn T, is assigned a unique fixed timestamp

that is monotonically increasing.

— Let TS(T,;) be the timestamp allocated to txn T;.
— Different schemes assign timestamps at different times
during the txn.

Multiple implementation strategies:
— System Clock.

— Logical Counter.
— Hybrid.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

Basic Timestamp Ordering (T/O) Protocol
Optimistic Concurrency Control
[solation Levels

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/0

Txns read and write objects without locks.

Every object X is tagged with timestamp of the last
txn that successfully did read/write:

— W-TS(X) — Write timestamp on X

— R-TS(X) - Read timestamp on X

Check timestamps for every operation:
— If txn tries to access an object "from the future", it aborts
and restarts.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — READS

[f TS(T;) < W-TS(X), this violates timestamp

order of T; with regard to the writer of X.
— Abort T; and restart it with a new TS.

Else:

— Allow T, to read X.
— Update R-TS(X) to max(R-TS(X), TS(T;))
— Make a local copy of X to ensure repeatable reads for T;.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — WRITES

IfTS(T,) < R-TS(X) or TS(T,) < W-TS(X)

— Abort and restart T;.

Else:
— Allow T, to write X and update W-TS(X)
— Also make a local copy of X to ensure repeatable reads.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

TS(T)=1 JOUe(1s(r)-=2) _____ Database
7TT1‘ T

2 ! Object R-TS W-TS

I 4
| |
I " !
: BEGIN , : " n n
R(B) i |
: BEGIN ! B 0 0
: R(B) i :
| W(B) : - -
1| R(A) I
: R(A) :
1| R(A) ,
: W(A) i
|| COMMIT | COMMIT ||
|
] I
I I
I I
!]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1
TS(T,)=1 JOYe(rgr)-2) _____ Database
=7, T {
| ! 2 : (I Object R-TS W-TS
1 | BEGIN ! n " ”
R(B) | —
’ BEGIN ! 1 | Qo Jo
: R(B) i |
| W(B) : . -
1| R(A) 1
I R(A) :
1| R(A) !
: W(A) i
|| COMMIT | COMMIT ||
: :
: i
‘ J

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1
TS(T,)=1 JOYe(rgr)-2) _____ Database
=7, T {
| ! 2 : (I Object R-TS W-TS
1 | BEGIN ! n " ”
R(B) | —
’ BEGIN ! 1 | Qi Jo
: R(B) i |
| W(B) : . -
1| R(A) 1
I R(A) :
1| R(A) !
: W(A) i
|| COMMIT | COMMIT ||
: :
: i
‘ J

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

TS(T)=1 JOUe(1s(r)-=2) _____ Database
7TT1‘ T

2 ! Object R-TS W-TS

f/
1 1
i - I
| BEGIN , N n n
I R(B) : 1[5 . .
I BEGIN ! I
: R (B) i !
| W(B) : AT T T -
1| RCA) i
I R(A) :
1| R(A) ,
: W(A) i
|| COMMIT | COMMIT ||
1
- I
: i
- i
!]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

TS(T)=1 JOUe(1s(r)-=2) _____ Database
7TT1‘ T

2 ! Object R-TS W-TS

/ 4
| |
I " !
1 | BEGIN , n n n
: R(B) I e . ;
: BEGIN : i
: R(B) i :
. mp(B) ! N .
1| R(A) I
I R(A) :
1| R(A) ,
: W(A) i
|| COMMIT | COMMIT ||
|
- |
1 I
1 I
! J

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

TS(T)=1 JOUe(1s(r)-=2) _____ Database
7TT1‘ T

2 ! Object R-TS W-TS

COMMIT COMMIT

/

I |

I I -

1 | BEGIN i D IA 1 0

: R(B) | I B 2 2

: BEGIN : I

i R(B) i -

: W(B) ! S e e -
mpR(A) I

| N

1| R(A) i

: W(A) I

. I

| |

| |

: I

‘ ;

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

TS(T)=1 JOUe(1s(r)-=2) _____ Database
7TT1‘ T

2 ! Object R-TS W-TS

I 4
| |
I - !
1 | BEGIN , : " . o
: R(B) I e . ;
: BEGIN : i
: R(B) i :
| W(B) : - -
1| R(A) I
: R(A) :
1| R(A) ,
: W(A) i
|| COMMIT | COMMIT ||
|
] I
I I
I I
!]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

TS(T,)=1 Y[1s(T,)=2
=

COMMIT COMMIT

{
: 2 : I
1 | BEGIN | |
1| R(B) I
: BEGIN ! | B 2 2
: R(B) i :
I W(B) : =
1| R(A) 1
I R(A) :
#R(A) I
: W(A) i
. :
I i
I i
: i
' ;

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

TS(T)=1 JOUe(1s(r)-=2) _____ Database
7TT1‘ T

2 ! Object R-TS W-TS

I 4
| |
I - !
1 | BEGIN , : " . :
: R(B) I e . >
: BEGIN : i
: R(B) i :
| W(B) : - -
1| R(A) I
: R(A) :
1| R(A) ,
: W(A) i
|| COMMIT | COMMIT ||
|
] I
I I
I I
!]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #1

COMMIT COMMIT

rs(r)=1 JOU rs(r)-2) ____ _Database
: L L : Wobject R-TS W-Ts
B S | i
: BEGIN : | B 2\ 2
! R(B) | - \

W(B

: R(A) © : No violations so both txns
: R(A) ! are safe to commit.
1| RCA) I
: W(A) i
! I
- i
- i
: i
‘)

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #2

Schedule Database
'f -------------- \\ e
i T1 T2 I |)
I 1 [l Object R-TS W-TS
1 | BEGIN I : A - 5
*R(A) i |
BEGIN : B 0 0
W(A) i :
COMMIT : e e -
W(A) I
R(A) :
COMMIT -
|
|
|
|
|
|
|
]

B N N N N N §N § N N N § N _§N |}

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #2

Schedule Database
'f -------------- ~ e
i T, T, ! f—
I 1 [l Object R-TS W-TS
1 | BEGIN I : A 1 2
11 R(A) I I
: BEGIN : 2 ° 2
: mp Vi(A) I |
I COMMIT : e e -
1| W(A) I
1| R(A) !
1 | COMMIT -
I I
| |
I I
I I
I I
I I
| |
| J

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #2

Schedule Database

Object R-TS

[
B 0 0|

—----\
>

BEGIN
W(A) i Violation:
COMMIT =TT TS(T,)<W-TS(A)

COMMIT

. N S B SN N B B e e e

N

T, cannot overwrite update
by T,, so the DBMS has to
abort it!

B B B _§ N N N N _§ | -----

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

THOMAS WRITE RULE

IfTS(T;) < R-TS(X):
— Abort and restart T;.

IFTS(T;) < W-TS(X):

— Thomas Write Rule: Ignore the write to allow the txn

to continue executing without aborting.
— This violates timestamp order of T;.

Else:
— Allow T, to write X and update W-TS(X)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Thomas_write_rule

BASIC T/O — EXAMPLE #2

Schedule Database
'f -------------- \\ e
i T1 T2 I |)
I 1 [l Object R-TS W-TS
1 | BEGIN I : A - 5
*R(A) i |
BEGIN : B 0 0
W(A) i :
COMMIT : e e -
W(A) I
R(A) :
COMMIT -
|
|
|
|
|
|
|
]

B N N N N N §N § N N N § N _§N |}

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #2

Schedule Database
'f -------------- ~ e
i T, T, ! f—
I 1 [l Object R-TS W-TS
1 | BEGIN I : A 1 2
11 R(A) I I
: BEGIN : 2 ° 2
: mp Vi(A) I |
I COMMIT : e e -
1| W(A) I
1| R(A) !
1 | COMMIT -
I I
| |
I I
I I
I I
I I
| |
| J

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — EXAMPLE #2

Schedule Database
-------------- \\ pTTTmTmEEEEmEmEm T
T, T, - I . I
| @ object R-TS W-TS I
ey !) O N P
i
BEGIN : | é : : :
WCA) :] We do not update
COMMIT : = = = - W‘TS(A)
i
\ |
Ignore the write and allow
T, to commit.

\--

$=SCMUDB 0 mmmmsmmsmsamamamam-—- -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/0

Generates a schedule that is conflict serializable if

you do not use the Thomas Write Rule.

— No deadlocks because no txn ever waits.

— Possibility of starvation for long txns if short txns keep
causing conflicts.

Permits schedules that are not recoverable...

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Thomas_write_rule

RECOVERABLE SCHEDULES

A schedule is recoverable if txns commit only
after all txns whose changes they read, commit.

Otherwise, the DBMS cannot guarantee that txns
read data that will be restored after recovering
from a crash.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

RECOVERABLE SCHEDULES

Schedule

BEGIN
W(A)

k_______l

T, can read the writes of T,.

.
This is not recoverable

because we cannot restart T, |

ABORT

T, aborts after T, has
committed.

‘----A------N

§=CMU-DB IO e e e e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

BASIC T/O — PERFORMANCE ISSUES

High overhead from copying data to txn's
workspace and from updating timestamps.

Long running txns can get starved.
— The likelihood that a txn will read something from a
newer txn increases.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OBSERVATION

[f you assume that conflicts between txns are rare
and that most txns are short-lived, then forcing
txns to wait to acquire locks adds a lot of overhead.

A better approach is to optimize for the no-
conflict case.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OPTIMISTIC CONCURRENCY CONTROL

The DBMS creates a private
workspace for each txn.

— Any object read is copied into workspace.

— Modifications are applied to workspace.

When a txn commits, the DBMS

compares workspace write set to see
whether it conflicts with other txns.

If there are no conflicts, the write set
is installed into the "global" database.

£SCMU-DB

15-445/645 (Fall 2020)

On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON
Carnagie-Mallon University

Most current approaches o concurrency cantrol in database aystems rely on locking of data objects
& control machanism, In this paper, two families of nanlocking concurrery controls are presented.
The methoda used are “optimistic” in the sense that they rely mainly on transaction backup ax &
control mechanism, “hoping” that conficts between transactions will not oceur. Applications for
which these methods should be more effickent than locking are discumed.

Key Words and Phrases: databases, concurrency control, transaction procesing

CR Categoriox: 432,439

1. INTRODUCTION
Consider the problem of providing shared access to a database organized s
collection of objects, We assume that certain distinguished objects, called the
100ts, are always prosent and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (we, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirablo,

(1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, 8o that it is necessary to
swap parts of the database from secondary memory as needed.

(2) Even if the entire database can be present in primary memory, there may be
multiple processors.

In both cases the hardware will be underutilized if the degree of concurrency
is too low,

Howaever, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to be lost. Most current

Parmision to copy without fue all or part of this matorial in granted provided that the copies are not
made or ditributed for direct commercial advantage, the ACM copyright notice and nh. title of the
publication and ita date appear, and notice bs given that copying is by permisi o Assoclation
for € omputing Machinery. To copy otherwise, or to. republish, requires a fee .mm wpecific
permiaio

i reserch wat sopportc i part by the National Sclence Poundation under Grant MCS 78.236.70
and the Office of Naval Resoarch under Contract N00O14.76-C0970.

Authors’ address: Department of Computer Scivace, Carnegie-Mellon University, Pittaburgh, PA

16213,
© 1981 ACM 0062-5016/81/0600.0213 800,78
ACM Tranasetions on Dtabiase Systems, Vol 6 No. 2, June 1991, Pages 213220

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=319567

OCC PHASES

#1 — Read Phase:

—> Track the read/write sets of txns and store their writes in
a private workspace.

#2 — Validation Phase:

— When a txn commits, check whether it conflicts with
other txns.

#3 — Write Phase:

— If validation succeeds, apply private changes to database.
Otherwise abort and restart the txn.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

-—— e . -

Schedule Database
1 T1 Tz } | .
I I @ Object Value W-TS
1 | BEGIN BEGIN I N e 2
Wy (RZ4D ! I - -
1| RCA) READ : -
: R(A) i =
I VALIDATE | | |
I WRITE I T, Workspace
| ComIT | T |

ec alue -

1| [WCA) i | [iad . I
: VALIDATE i : :
1 | [WRITE : o S S ,
I I L F F N B 2
| | commIT :
I [
!]

/4

--------------’

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

-—— e . -

Schedule Database
’--------------\ | 5 B B N B B B B B B B B B B B B |
f 1 f
1 T1 Tz 1 | .

I I @ Object Value W-TS

1 | BEGIN BEGIN " N 123 0

1\ |READ i : . . .
*R(A) READ : -

: R(A) I g ———————

I VALIDATE | | |

I WRITE I T, Workspace

1 COMMIT I (s)

: l ' '

1 [WCA) 1 | |

: VALIDATE I 1 |A 123 |0 I

1 |[WRITE ! S S & :

I I L F F F Fr Fr FrFr 8 5 r 2

| | commIT :

|

\ ;

/4

--------------’

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

Schedule Database

’--------------\ | & 8 B B B B B B B & B B B B B B J

i T T, ! { e i

I I @ Object Value W-TS I

1 | BEGIN BEGIN - N e 2 I

| ||READ i I - - !

1 R(A) READ : " I

: R(A) I e e e e e I

] VALIDATE | | |

i WRITE i T, Workspace T, Workspace

- COMMIT I [geeten SR et \

[. || [OSYEUNEN | (SRR |

: VALIDATE : : A 123 |0 : : - - - :

: WRITE i L ' ' T _ _ I
I . F N N & B B BN B 2 L N R N N F N B B B B N 2

1 | commMIT :

I I

! Y]

/4

--------------’

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

-_ e .

Schedule Database
SmmmEE-_—_—_—_—_—_—_—N o
|' T1 Tz } Ir . \|
I I @ Object Value W-TS I
1 | BEGIN BEGIN I I A 123 0 |
: READ I : - - - :
1| [RCA) READ : - |
!) R(A) I SRy ———
I VALIDATE :
i WRITE i T, Workspace T, Workspace
: COMMIT - C e) M (o
' lne I <. vare vrs TR oo ect votue -1 |
: VALIDATE I :A 123 [0 : :A 123 |0
1 |[WRITE : 1 - - el |- _ _
I I L . _ F F B F B B B B B BN 2 L N R N N F N B B B B N 2
: COMMIT :
I i
!]

/4

--------------’

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

Schedule Database

g N T ——————

| T1 Tz 1 | . |

I I @ Object Value W-TS I

1 | BEGIN BEGIN I 1 [, 9 2 I

: READ I : - - - :

R(A READ

LR oA !TS(T2)=1 | ___—_____J

| T 1

: e [VALIDATE]| |

| WRITE " T, Workspace T, Workspace
MMIT | Fro o) e

e || I vovvevrs R votie vrs

| |[WRITE : o S S o N L

I I LR N B B N _§ § B B N B 2 4NN EEN NN BN BN BN BN B

| | commIT :

|

‘ ;

/4

--------------’

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

Schedule Database
O DT TTITTTY (T ——————
| T1 Tz 1 | . |
I I @ Object Value W-TS I
1 | BEGIN BEGIN " N e 3 I
| ||READ i I - - !
1 |[RCA) READ TS(T,)=1 . _____
: R(A e
] VALIDATET| |
i # WRITE " T, Workspace T, Workspace
I COMMIT I [gttt | gttt
ey o oc: voioe s RO cc: vatue s |
: VALIDATE 1 : A 123 0 : : A 123 0
1 |[WRITE : 1 - - el |- _ B}
I I L . _ F F B F B B B B B BN 2 L N R N N F N B B B B N 2
1 | commMIT :
|
‘ ;

/4

--------------’

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

-—— e . -

Schedule Database
| T1 Tz } | .
I I @ Object Value W-TS
1 | BEGIN BEGIN " N 123 0
: READ I : . . .
R(A READ
LR el T T —
| .
I VALIDATET| |
I WRITE I T, Workspace
: COMMIT I (s)
o . voic 15 [
Rjule : YA h23 o -
: VALIDATE I : I
1 | [WRTTE ! S S & :
I I L F F F Fr Fr FrFr 8 5 r 2
: COMMIT :
I I
\ J

/4

--------------’

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

Schedule Database
@ [I N N [N ~ e e e e e e e e
{ T T, .
I L Z : @ Object Value W-TS
1 | BEGIN BEGIN " an e 2
: READ I : . . .
R(A READ
LR oA !TS(T2)=1 N ———— |
//—
: VALIDATE] |
i WRITE I
: comMrT ||
(A :
\'| [VALIDATE 1
| | [WRITE :
1 I
| | commIT :
|
‘ ;

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

-—— e . -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

Schedule Database
—————————————— N e ———————
¢
T, T, } I)
I @ Object Value W-TS
BEGIN BEGIN , 1 (A 123 0
READ I : 3 : B
R(A) READ l TS(T,)=1 I
27— - -
T/AﬁIDATE’ I
|
WRITE - T, Workspace
i e \
(Ts(T)=2] |1 T = |
W(A) et I I I
VALIDAT, | : SN FOON !
WRITE "] S i
I [N N N J
COMMIT :
|
I

£SCMU-DB

15-445/645 (Fall 2020)

-—— e . -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - EXAMPLE

Schedule Database
—————————————— N e ———————
¢
T, T, } I)
I @ Object Value W-TS
BEGIN BEGIN " an 456 9
READ I : 3 . B
R(A) READ l TS(T,)=1 I
27— L T T -
T/AﬁIDATE’ I
|
WRITE - T, Workspace
i e \
(Ts(T)=2] |1 T = |
W(A) et I I I
VALIDAT, | : SN FOON !
WRITE "] S i
I [N N N J
COMMIT :
|
I

£SCMU-DB

15-445/645 (Fall 2020)

-—— e . -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - READ PHASE

Track the read/write sets of txns and store their
writes in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure
repeatable reads.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

25

OCC - VALIDATION PHASE

When txn T, invokes COMMIT, the DBMS checks

if it conflicts with other txns.

— The DBMS needs to guarantee only serializable schedules
are permitted.

— Checks other txns for RW and WW conflicts and ensure
that conflicts are in one direction (e.g., older>younger).

Two methods for this phase:
— Backward Validation
— Forward Validation

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

OCC — BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

oot N

Txn #2 | |

Txn #3

1

|

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

OCC — BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

e
]

Txn #3

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

OCC — BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

Validation Scope

COMMIT

-
-
=
=
o
(]

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

e
]

Txn #3

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

27

OCC - FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

ron st

Txn #3

Validqtion Scope

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - FORWARD VALIDATION

Each txn's timestamp is assigned at the beginning
of the validation phase.

Check the timestamp ordering of the committing
txn with all other running txns.

[f TS(T;) < TS(T;), then one of the following
three conditions must hold...

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #1

T; completes all three phases before T, begins.

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #1

Schedule
ARSI ETE a
I T, T, -
i | BEGIN :
: READ i
1 | [VALIDATE :
| | [WRITE I
| | coMMIT !
I BEGIN i
: READ]| !
I \VALIDATE || y
: WRITE || 1
I COMMIT :
: :
I I
I I
!]

§=CMU-DB IO e e e e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #2

T; completes before T; starts its Write phase, and

T; does not write to any object read by T..
— WriteSet(T;) M ReadSet(T;) =0

§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #2

IT

T, must abort even though
T, will never write to the
database.

Schedule Database
" """""""" \\ [e e \
I T, T, I |) I
I I @ Object Value W-TS I
1 | BEGIN BEGIN I I A 123 0 |
: READ i : - - - :
1 |[RCA) : i 1
: W(A) READ I f == -
i R(A) :
I " T, Workspace T, Workspace
I ' I r ----------- \ r -----------
'
i [VALIDATE | : : Object Value W-TS : : Object Value W-TS
: WRITE | 1 1 |A 123 |~ 1 1 (A 123 |0

i i 1

i i 1
i
i
i
i
1

£2CMU-DB N

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #2

Schedule Database
l’ T T \\ (TTTEEEEEEEEEEmmmm———)
| 1) 1 | . 1
I I @ Object Value W-TS I
1 | BEGIN BEGIN " an 9 2 I
: READ I : . . . :
1 |[RCA) : i 1
LI WCA) READ i S ————— =
I R(A) :
! VALIDATE | | | 1, Workspace § _I; Workspaoel
| [ALIATE] - e o5 RO oviect voiue v-rs |
1 |WRITE | I I ject Value " i ject Value
I| coMMIT WrRITE]| 1 1 [A_ 456 |~ 1 1 |A 123 |0
- :
I I
I I
!]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #2

Schedule Database
g T T N (T T T T mmmmmmm————)
| 1 2 1 | . |
I I @ Object Value W-TS I
1 | BEGIN BEGIN I N 9 2 i
: READ I : - - - :
1 |[RCA) : i 1
1| W(A) READ i e g =
: i
I R(A) I
I VALIDATE || y T, Workspace T, Workspace
I) [(o= \ G ———
! Lo Lo
I . _ _ _ I 1 |- _ _
I | |Safetocommit T, because welz—1 - o |
I know that T, will not write. J
I | |
I
! i

J
§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #3

T; completes its Read phase before T; completes
its Read phase

And T; does not write to any object that is either
read or written by T;:

— WriteSet(T;) M ReadSet(T;) =0

— WriteSet(T;) N WriteSet(T;) =0

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #3

Schedule Database
g T T N e e \
I 1 2 I I . I
I I @ Object Value W-TS I
1 | BEGIN BEGIN I 1 [, e . I
1| |READ I I I
| I B XYZ 7] |
1 |[RCA) : i 1
: W(A) READ I e e e =
I R(B) :
: [VALIDATE | - T, Workspace T, Workspace
I o= ——————— y fmmmmmm————
I IWRITE l | [l Object Value W-TS | Bl Object Value W-TS
1 | COMMIT R(A) I i 00 I Ob:
! VALIDATE || | 1A 1456 |- |y @B |X¥Z |0
- WRITE || | 1 - - e - - -
: COMMIT I S - gm0 _
I |
I I
! Y]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #3

Schedule Database
g \\ TTTEEEEEEEEEmm————)
| T1 Tz 1 | . |
I I @ Object Value W-TS I
1 | BEGIN BEGIN " N P 2 i
1| |READ I ! I
I 1 [B XYZ 0 I
: R(A) : L B
L [Ts(r)-=t]| 1
\\PJ
*| VALIDATE : T, Workspace T, Workspace
V| [WRITE I O T I ey
o\ ey |1 | T | s
DATE || 1 L [A 456 |~ I 1 |B XYZ |0
11
vl

Safe to commit T, because
T, sees the DB after T, has
executed.

J

B N B __§ N N N _§N |

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #3

Schedule Database
-------------- \\ (CTTTEEEEmmm—————
T1 Tz 1 | . |
1 @ Object Value W-TS I
BEGIN BEGIN I an e . :
READ I I I
B X
R(A) : L YZ 7] J
o (s
ST\)
[VALIDATE : T, Workspace T, Workspace
eire e TR e]
COMMIT R(A) I I Object Value W-TS " i Object Value W-TS
VALIDATE || | 1 (A 456 [~ I 1 |B XYz |o
WRITE || | 1 - - ek |- - -
COMMIT : e e - - — = >
i
i
J

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #3

Schedule Database
" T T \\ f ----------------- 1
I 1 2 I I) I
I I @ Object Value W-TS I
1 | BEGIN BEGIN I I A 456 1 |
1 | ([READ I I I
| I B XYZ 7] |
| R(A> : | I
: W(A) READ I e e -
i R(B) :
| | [VALIDATE | I T, Workspace
|| [WRITE] : Ir--------
1 | COMMIT R(A) 1 I — ject Value W-TS
: VALIDATE || | : B XYz |0
i WRITE || | N
: COMMIT I ——m————————— -
- |
I i
!]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — FORWARD VALIDATION STEP #3

Schedule Database
" T T \\ f ----------------- 1
I 1 2 I I) I
I I @ Object Value W-TS I
1 | BEGIN BEGIN I I A 456 1 |
V| |READ I I I
1 I |IB XYZ 0 1
| R(A> : | I
: W(A) READ i S —————— -
i R(B) :
I IVALIDATEI I T, Workspace
|| i Woiccs vee wrs |
1 | COMMIT -R(A) 1 | ject Value
: VALIDATE || 1 : B XYZ |0
i WRITE || | I [a [sas6 |
: COMMIT I ——m————————— -
- :
- i
!]

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC - WRITE PHASE

The DBMS propagates the changes in the txn’s
write set to the database and makes them visible to
other txns.

Assume that only one txn can be in the Write

Phase at a time.
— Use write latches to support parallel validation/writes.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — OBSERVATIONS

OCC works well when the # of conflicts is low:

— All txns are read-only (ideal).
— T'xns access disjoint subsets of data.

[f the database is large and the workload is not
skewed, then there is a low probability of conflict,
so again locking is wasteful.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

OCC — PERFORMANCE ISSUES

High overhead for copying data locally.
Validation/Write phase bottlenecks.

Aborts are more wasteful than in 2PL because they
only occur after a txn has already executed.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DYNAMIC DATABASES

Recall that so far we have only dealing with
transactions that read and update existing objects
in the database.

But now if we have insertions, updates, and
deletions, we have new problems...

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

THE PHANTOM PROBLEM

Schedule

o o o ~ |CREATE TABLE people (
/)
: T, T, } id SERIAL,
! | BEGIN BEGIN : 222e1x¢RCHAR’
| ’
I | | SELECT MAX(age)
D | [wheRe status="1it 1 D
|
1
: INSERE-INTO people :
I (ag status='lit") |
: COMMIT :
SELECT MAX(age) I
: FROM peop{ljee » 96 ’@’ |
WHERE status='lit' |
: oWy I
| commMIT :
\ /
\~ _________________________ > 4

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

£SCMU-DB

15-445/645 (Fall 2020)

WTEF?

How did this happen?

— Because T, locked only existing records and not ones
under way!

Conflict serializability on reads and writes of
individual items guarantees serializability only if
the set of objects is fixed.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

THE PHANTOM PROBLEM

Approach #1: Re-Execute Scans
Approach #2: Predicate Locking

Approach #3: Index Locking

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

RE-EXECUTE SCANS

The DBMS tracks the WHERE clause for all queries

that the txn executes.
— Have to retain the scan set for every range query in a txn.

Upon commit, re-execute just the scan portion of
each query and check whether it generates the

same result.

— Example: Run the scan for an UPDATE query but do not
modify matching tuples.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PREDICATE LOCKING

Proposed locking scheme from System R.

— Shared lock on the predicate in a WHERE clause of a
SELECT query.

— Exclusive lock on the predicate in a WHERE clause of any
UPDATE, INSERT, or DELETE query.

Never implemented in any system except for
HyPer (precision locking).

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://hyper-db.de/
http://www-db.in.tum.de/~muehlbau/papers/mvcc.pdf

PREDICATE LOCKING

SELECT MAX(age)

eople

FROM INSERT INTO people VALUES
WHERE status='lit'

(age=96, status='lit')

Records in Table "people”

astatus='1it'

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PREDICATE LOCKING

SELECT MAX(age)

INSERT_INTO people VALUES

eople

FROM
WHERE status='lit'

Records in Table "people”

astatus='1it'

age=96 A
status="1lit'

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

48

INDEX LOCKING

If there is an index on the status attribute then the
txn can lock index page containing the data with
status='1lit".

If there are no records with status="11t"', the
txn must lock the index page where such a data
entry would be, if it existed.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LOCKING WITHOUT AN INDEX

If there is no suitable index, then the txn must

obtain:

— A lock on every page in the table to prevent a record’s
status='lit' from being changed to 1it.

— The lock for the table itself to prevent records with
status="lit' from being added or deleted.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

WEAKER LEVELS OF ISOLATION

Serializability is useful because it allows
programmers to ignore CONCurrency 1ssues.

But enforcing it may allow too little concurrency
and limit performance.

We may want to use a weaker level of consistency
to improve scalability.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of

exposing txns to uncommitted changes:
— Dirty Reads

— Unrepeatable Reads

— Phantom Reads

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable,
no dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms and unrepeatable
reads may happen.

READ UNCOMMITTED: All of them may happen.

Isolation (High=Low)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ISOLATION LEVELS

1 Unrepeatable

: Dirty Read Read Phantom
|

i SERIALIZABLE| No No No
|

|

| REPEATABLE READ No No Maybe
|

|

|

| READ COMMITTED| No Maybe Maybe
i

i READ UNCOMMITTED| Maybe Maybe Maybe
i

£SCMU-DB

15-445/645 (Fall 2020)

_-----------l

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

54

ISOLATION LEVELS

SERIALIZABLE: Obtain all locks first; plus index
locks, plus strict 2PL.

REPEATABLE READS: Same as above, but no index
locks.

READ COMMITTED: Same as above, but S locks are
released immediately.

READ UNCOMMITTED: Same as above but allows
dirty reads (no S locks).

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SQL-92 ISOLATION LEVELS

You set a txn's isolation level before

you execute any queries in that txn.

Not all DBMS support all isolation

levels in all execution scenarios
— Replicated Environments

The default depends on
implementation...

£SCMU-DB

15-445/645 (Fall 2020)

SET TRANSACTION ISOLATION LEVEL
<isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL
<isolation-level>;

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

ISOLATION LEVELS (2013)

Actian Ingres 10.0/10S
Aerospike

Greenplum 4.1
MySQL 5.6

MemSQL 1b

MS SQL Server 2012
Oracle 11g

Postgres 9.2.2

SAP HANA

ScaleDB 1.02

Source: Peter Bailis VoltDB

£SCMU-DB

15-445/645 (Fall 2020)

Default
SERIALIZABLE
READ COMMITTED
READ COMMITTED
REPEATABLE READS
READ COMMITTED
READ COMMITTED
READ COMMITTED
READ COMMITTED
READ COMMITTED
READ COMMITTED
SERIALIZABLE

Maximum
SERIALIZABLE
READ COMMITTED
SERIALIZABLE
SERIALIZABLE
READ COMMITTED
SERIALIZABLE
SNAPSHOT ISOLATION
SERIALIZABLE
SERIALIZABLE
READ COMMITTED
SERIALIZABLE

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

DATABASE ADMIN SURVEY

What isolation level do transactions execute at on

this DBMS?
B None Few M Most M All
30 26

4] 22

g 20

3

@ 12

[~ 10

w 10 - 3 7

°© 4

* 2

0 - Read Read Committed | Cursor Stability Repeatable Read Snapshot Isolation Serializable

S2CMU-DB Uncommitted

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SQL-92 ACCESS MODES

You can provide hints to the DBMS
about whether a txn will modify the
database during its lifetime.

Only two possible modes:
— READ WRITE (Default)
— READ ONLY

Not all DBMSs will optimize
execution if you set a txn to in READ
ONLY mode.

£SCMU-DB

15-445/645 (Fall 2020)

SET TRANSACTION <access-mode>;

BEGIN TRANSACTION <access-mode>;

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONCLUSION

Every concurrency control can be broken down
into the basic concepts that ['ve described in the
last two lectures.

['m not showing benchmark results because I don't
want you to get the wrong idea.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

NEXT CLASS

Multi-Version Concurrency Control

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

