
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

18 Multi-Version
Concurrency Control

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

ADMINISTRIVIA

Project #3 is due Sun Nov 22nd @ 11:59pm.

Q&A Session on Wed Nov 11th @ 8:00pm
→ https://cmu.zoom.us/j/96880648178?pwd=Z0loZUVOR

VV1eURFc2R0aDR6QU5udz09

No class on Wed Nov 11th

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://cmu.zoom.us/j/96880648178?pwd=Z0loZUVORVV1eURFc2R0aDR6QU5udz09

15-445/645 (Fall 2020)

UPCOMING DATABASE TALKS

EraDB "Magical SuperIndexes"
→ Monday Nov 9th @ 5pm ET

FaunaDB Serverless DBMS
→ Monday Nov 16th @ 5pm ET

Confluent ksqlDB (Kafka)
→ Monday Nov 16th @ 5pm ET

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-eradb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-faunadb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-confluent-ksqldb-a-stream-relational-database-system/

15-445/645 (Fall 2020)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new

version of that object.
→ When a txn reads an object, it reads the newest version

that existed when the txn started.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC HISTORY

Protocol was first proposed in 1978 MIT PhD
dissertation.

First implementations was Rdb/VMS and
InterBase at DEC in early 1980s.
→ Both were by Jim Starkey, co-founder of NuoDB.
→ DEC Rdb/VMS is now "Oracle Rdb"
→ InterBase was open-sourced as Firebird.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://en.wikipedia.org/wiki/Jim_Starkey
https://dbdb.io/db/rdbvms
https://www.embarcadero.com/products/interbase
https://firebirdsql.org/

15-445/645 (Fall 2020)

MULTI-VERSION CONCURRENCY CONTROL

Writers do not block readers.
Readers do not block writers.

Read-only txns can read a consistent snapshot
without acquiring locks.
→ Use timestamps to determine visibility.

Easily support time-travel queries.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1
and sets A0 End-TS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1
and sets A0 End-TS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1
and sets A0 End-TS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

-2456A1

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

T1 reads version A0.

-2456A1

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

-2456A1

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

-1456A1

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

T2 reads version A0
because T1 has not

committed yet.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

T2 must stall until T1
commits.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

T1 reads version A1 that it
wrote earlier.

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

Committed1T1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1 2

-2789A2

TS(T1)=1 TS(T2)=2 Database

Active2T2

Committed1T1

Now T2 can create the new
version.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MULTI-VERSION CONCURRENCY CONTROL

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS
manages transactions and the database.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

Deletes

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency
Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before

they can read/write a logical tuple.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION STORAGE

The DBMS uses the tuples' pointer field to create a
version chain per logical tuple.
→ This allows the DBMS to find the version that is visible

to a particular txn at runtime.
→ Indexes always point to the "head" of the chain.

Different storage schemes determine where/what
to store for each version.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied

into a separate delta record space.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

14

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

B1 $10 Ø

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

14

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

A2 $333 Ø

B1 $10 Ø

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

14

Main Table

VALUE

A0 $111

POINTER

A1 $222

A2 $333 Ø

B1 $10 Ø

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TIME-TRAVEL STORAGE

16

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TIME-TRAVEL STORAGE

16

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TIME-TRAVEL STORAGE

16

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TIME-TRAVEL STORAGE

16

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TIME-TRAVEL STORAGE

16

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DELTA STORAGE

17

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DELTA STORAGE

17

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) ØA2 $222

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DELTA STORAGE

17

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DELTA STORAGE

17

Txns can recreate old
versions by applying the delta
in reverse order.

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can "see" that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does

not have to scan tuples to determine visibility.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

D
irty P

age B
itM

ap

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Vacuum

D
irty P

age B
itM

ap

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1XGET(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1X XGET(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple's pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple's pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://eng.uber.com/mysql-migration/

15-445/645 (Fall 2020)

SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX POINTERS

24

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX POINTERS

24

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97

GET(A)

Append-Only
Newest-to-Oldest

Physical
Address

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX POINTERS

24

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

24

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX POINTERS

24

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

Primary
Key

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

INDEX POINTERS

24

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address

TupleId

Physical
Address

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC INDEXES

MVCC DBMS indexes (usually) do not store
version information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from
different snapshots:
→ The same key may point to different logical tuples in

different snapshots.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

DELETE(A)

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

DELETE(A)

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

DELETE(A)

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM

26

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

READ(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC INDEXES

Each index's underlying data structure must
support the storage of non-unique keys.

Use additional execution logic to perform
conditional inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then must follow the pointers to find
the proper physical version.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DELETES

The DBMS physically deletes a tuple from the
database only when all versions of a logically
deleted tuple are not visible.
→ If a tuple is deleted, then there cannot be a new version of

that tuple after the newest version.
→ No write-write conflicts / first-writer wins

We need a way to denote that tuple has been
logically delete at some point in time.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC DELETES

Approach #1: Deleted Flag
→ Maintain a flag to indicate that the logical tuple has been

deleted after the newest physical version.
→ Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple
→ Create an empty physical version to indicate that a logical

tuple is deleted.
→ Use a separate pool for tombstone tuples with only a

special bit pattern in version chain pointer to reduce the
storage overhead.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC IMPLEMENTATIONS

30

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

CMU's TBD MV-OCC Delta Txn-level Logical

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://github.com/cmu-db/terrier

15-445/645 (Fall 2020)

CONCLUSION

MVCC is the widely used scheme in DBMSs.
Even systems that do not support multi-statement
txns (e.g., NoSQL) use it.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

NEXT CL ASS

No class on Wed November 11th

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

