Carnegie Mellon University

13

o Intro to Database Systems Andy Pavlo
X AP

)

4 T

~ ,_”‘; N

-~

I\/Iultl—VerS|0n
Concurrency Control

15-445/15-645 Computer Science
Ny @ Fall 2020 Carnegie Mellon University

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #3 is due Sun Nov 22™ @ 11:59pm.

Q&A Session on Wed Nov 11% @ 8:00pm
— https://cmu.zoom.us/j/96880648178?pwd=Z0loZUVOR
VV1eURFc2R0aDR6QU5udz09

No class on Wed Nov 11tk

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://cmu.zoom.us/j/96880648178?pwd=Z0loZUVORVV1eURFc2R0aDR6QU5udz09

UPCOMING DATABASE TALKS

EraDB "Magical SuperIndexes"
— Monday Nov 9" @ 5pm ET

FaunaDB Serverless DBMS
— Monday Nov 16" @ 5pm ET

Confluent ksqlDB (Kafka)) CONFLUENT
— Monday Nov 16" @ 5pm ET

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-eradb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-faunadb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-confluent-ksqldb-a-stream-relational-database-system/

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:

— When a txn writes to an object, the DBMS creates a new
version of that object.

— When a txn reads an object, it reads the newest version
that existed when the txn started.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC HISTORY

Protocol was first proposed in 1978 MIT PhD
dissertation.

First implementations was Rdb/VMS and
InterBase at DEC in early 1980s.

— Both were by Jim Starkey, co-founder of NuoDB.
— DEC Rdb/VMS is now "Oracle Rdb"

— InterBase was open-sourced as Firebird.

G»

/

Oracle Rdb
Rdb/VMs » thergacta(l—)ase for HP

OpenVMS Platform

I

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://en.wikipedia.org/wiki/Jim_Starkey
https://dbdb.io/db/rdbvms
https://www.embarcadero.com/products/interbase
https://firebirdsql.org/

MULTI-VERSION CONCURRENCY CONTROL

Writers do not block readers.
Readers do not block writers.

Read-only txns can read a consistent snapshot

without acquiring locks.
— Use timestamps to determine visibility.

Easily support time-travel queries.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC - EXAMPLE #1

| Ts(r)=1 pedul{ Ts(1,)-2 Database
T T

: 1 2 Version Value Begin End

1 | BEGIN

¢ \
I I
: :
RCA) : A, 123 |0 :
BEGIN I I
W(A) : :
R(A) . . -
COMMIT
COMMIT

\----------

B N N N N N §N § N N N § N _§N |}

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC - EXAMPLE #1

| Ts(r)=1 pedul{ Ts(1,)-2 Database
T T

L 2 Version Value Begin End

BEGIN

r ‘.

: ' I

I b lA 123 o - |1

R(A) : 1 [a, 456 |2 -]

BEGIN | i I

W(A) I - :

R(A) : . -
COMMIT

T, creates version A,
and sets A, End-TS.

N &N __§ N N N N N &N §B N N N § N § §N §N _§ |

\---

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC - EXAMPLE #1

(rsr)=1)edul{rser)-2] DEIElESE
T T

¢
1 2 i 1
i ' 0 :

BEGIN I b 1A 123 o 2
R(A) : 1 (A, 456 |2 -

BEGIN | I

W(A) i -
R(A) : e e . -
COMMIT

T, creates version A,
and sets A, End-TS.

N &N __§ N N N N N &N §B N N N § N § §N §N _§ |

\---

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC - EXAMPLE #1

(rsr)=1)edul{rser)-2] DEIElESE
T T

.f ‘.

! 2 : | g 0 B a |

BEGIN I b 1A 123 o 2 | !

RCA) : 1 (A 456 |2 - i

BEGIN | i -

W(A) i : :

R(A) : - -
COMMIT

T, creates version A,] Txn Status Table

and sets A, End-TS.
T TxnId Timestamp Status

T, 1 Active
T

9 2 Active

N &N __§ N N N N N &N §B N N N § N § §N §N _§ |

----I

‘______

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC - EXAMPLE #1

| Ts(r)=1 pedul{ Ts(1,)-2 Database
T T

[4 \
I
: ! 2 : [l Version Value Begin End :
| BEGIN | b 1A 123 |o 2 |
1| RCA) : 1 (A, 456 |2 - |
I BEGIN I I I
I W(A) | - :
) R(A) ! Y -
I | COMMIT I
I : (N \
I : | I
: I : T, 1 Active :
I : : T, 2 Active I
1 1 I :
| 1 I !
‘ ' N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC - EXAMPLE #1

| Ts(r)=1 pedul{ Ts(1,)-2 Database
T T

¢’ \
I
: ! 2 : [l Version Value Begin End :
| BEGIN | b lA 123 |0 2 ||
1| RCA) : 1 (A, 456 |2 - |
: BEGIN | i I
1 W(A) I I I
I lﬁ ---------------- "
I
I
, I Txn Status Table
T, reads version A, COMMLT I p———— \
l ! | -
: I : T, 1 Active :
- : b, |2 Active i
1 1 I :
| 1 I !
‘ l N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC - EXAMPLE #1

| Ts(r)=1 pedul{ Ts(1,)-2 Database
T T

[4 \

I
: ! 2 : [l Version Value Begin End :
| BEGIN | b lA 123 |0 2 ||
1| RCA) : 1 (A, 456 |2 - |
I BEGIN I I I
: W(A) | - :
1| RCA) : S —————————— -
I | COMMIT I
I : (N \
I : | I
: I : T, 1 Active :
- : b, |2 Active i
1 1 I :
| 1 I !
‘ l N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MVCC — EXAMPLE #2

| TS(TI)T=1

1 1

b (_j Y jl TS(T,)=2
T

2

|
1 | BEGIN
R(A)
1| W(A) BEGIN
| R(A)
, W(A)
1| R(A)
I | COMMIT
|
: COMMIT
|
|
|
|
|
1
N o o e e e e e

ﬁ----------

Database

Version Value Begin End

123 0

—----\
>
S
----I

TxnId Timestamp Status

Active

—----\
| —

----I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC — EXAMPLE #2

| s(r)-1 Jedul{ 1s(r,)-2 Database
T T

[4 \

I
: ! 2 : [l Version Value Begin End :
| | BEGIN . L (s, 123 o -
R(A) : 1 |A, 456 1 - I
(A BEGIN ! I I
: R(A) i - :
H e W(A) : e e =

1| R(A I

I : (N \
I coMmMIT | | | I
! I : T, 1 Active :
1 1 I -
1 1 I -
1 1 I -
| 1 I !
‘ l N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC — EXAMPLE #2

(7sr)-1 Jedul{rsr)-2] DEIElESE
T T

(‘.
I 1 2 I -
| [BEGIN ! : = . -
: I LA 123 |0 1 :
R(A) : 1|, 456 |1 - |
*W(A) BEGIN I | I
! R(A) I - :
I " W(A) : e -
I | RCA I
I : It """"""""" \
| coMMIT | |] :
I I : T, 1 Active :
| 1 I -
| 1 I -
| 1 I "
1 1 i]
‘ l N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

§=CMU-DB

15-445/645 (Fall 2020)

MVCC — EXAMPLE #2

TS(T)=1 edul{ 15(T,)-2 Database

T T o \
| oo — | i
: gI(E%N : b lA 123 |0]!
1 i I |A 456 |1 - i
i [WCA) BeGIN || i |
') |
| m : S _ _
[conn NN Tun Qtatus Table

COMMIT :

: T,readsversion A, |f=mmmmm-a- \
: COMMIT because T’ has not !
i committed yet. et ive !
: : : T, 2 Active :
I : ! |
: . I]
N o o o o e ,’ - -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC — EXAMPLE #2

(7sr)-1 Jedul{rsr)-2] DEIElESE
T T

[4 \

1
Y — — | I
| BEGIN | b 1A 123 |o 1|
1| RCA) : 1 (A, 456 |1 - |
1| WCA) BEGIN I I I
: R(A) | - :
H e W(A) : e e =
1| R(A I
i : (N \
I cowwrT |1 | I
: I : T, 1 Active :
I : : T, 2 Active I
1 1 I :
1 1 I !
‘ l N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC — EXAMPLE #2

(7sr)-1 Jedul{rsr)-2] DEIElESE
T T

¢ N
Y — . ! :
: BEGIN i b 1A 123 |o 1 !
1 | RCA) : (A, 456 |1 - i
1 wea) BEGIN | i I
: R(A) I | !
| W(A) : AT T T -
: ﬁéﬁan . ~ Txn Status Table
| v T, must stalluntil T, [f========= \
! COMMIT commits. :
: I 1 T 1 Active :
1 : 1T, 2 Active I
: : : :
1 1 I i
J L & — — — — —1— -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC — EXAMPLE #2

(7sr)-1 Jedul{rsr)-2] DEIElESE
T T

¢ \
|
l : — | :
| BEGIN | b lA 123 |0 1|
1| RCA) : 1 [a, 456 |1 - |
1WA BEGIN | I |
: R(A) i - :
I W(A) : e T e T e T e T e -
.

. g I Txn Status Table
v : I, ————————————————— \I
comMIT | I | !
. . | . 1
T, reads version A, that it ! | L] Active I
wrote earlier. I LR Active :

I

W I : -
‘ l N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC — EXAMPLE #2

(7sr)-1 Jedul{rsr)-2] DEIElESE
T T

/ \
|
I ! 1 l :
| BEGIN | b 1A 123 |o 1|
1| RCA) : 1 (A, 456 |1 - |
1WA BEGIN ! i -
: R(A) I - :
I " W(A) : e e e g e e =
1| R(A L |
* COMMIT | g : Txn Status Table
| v | I, \I
: comrr |} -
: I : T, 1 Committed :
I : : T, 2 Active I
1 1 I :
| 1 I !
‘ l N O I I BN SN BN NN BN BN NN B B . -

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC — EXAMPLE #2

(7sr)-1 Jedul{rsr)-2] DEIElESE
T T

1 2 Version Value Begin End

Committed
Active

Now T, can create the new
version.

[\
- i I i
- i I i
I | BEGIN i b 1A 123 |o 1 I
LI R(A) I I T, : i
L wea BEGIN I 1 5 I
' : A 789 |2 - 1
: R(A) i | :
: R(A) W“:) i Y A -
I | COMMIT 'g | Txn Status Table
! v " e
: mm) CoMM I |
' i
i
i
i
i
1

----I

§=CMU-DB B e e e e e e e e e e -

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MULTI-VERSION CONCURRENCY CONTROL

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS

manages transactions and the database. SFM),!!&E
ALTIBASE & vertorwice metcd Bl InfiniDB
eXtremeDB |N GR: s /;\ﬂ
TIMESCALE & = WIREDTIGER \a
o —— N) NETEZzZA
NUoO FOUNDATIONDB 000 slaffodil,
PostgreSQL > . SQL Server Hekaton =~ ™emee=ere ,J Hy Per
Q Couchbase“' CUBRID lMDB MANA
) @ ArangoDB ~ AN MEMSQL
Clustrix < OrientDB 8 P _AC H E .4 MariaDp ORACLE st
o y HBRASE @ realm HYRISE
RAVENDSB noise =(GSE=

o page * RethinkDB "\MuUSCIL. § Cockroach Lass =(cE

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage

Garbage Collection

Index Management

Deletes

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
— Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency

Control

— Three-phase protocol from last class.
— Use private workspace for new versions.

Approach #3: Two-Phase Locking

— Txns acquire appropriate lock on physical version before
they can read/write a logical tuple.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VERSION STORAGE

The DBMS uses the tuples' pointer field to create a

version chain per logical tuple.

— This allows the DBMS to find the version that is visible
to a particular txn at runtime.

— Indexes always point to the "head" of the chain.

Different storage schemes determine where/what
to store for each version.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VERSION STORAGE

Approach #1: Append-Only Storage

— New versions are appended to the same table space.

Approach #2: Time-Travel Storage
— Old versions are copied to separate table space.

Approach #3: Delta Storage

— The original values of the modified attributes are copied
into a separate delta record space.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table

space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

£SCMU-DB

15-445/645 (Fall 2020)

Main Table

»

VALUE POINTER

<

A, | 777 | @
A, $222 0
B, $70 0

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

APPEND-ONLY STORAGE

Main Table
All the physical versions of a logical
tuple are stored in the same table

VALUE POINTER

space. The versions are inter-mixed. - e—
_ I o
On every update, append a new B, 570
version of the tuple into an empty
: A, | $333
space in the table.

£SCMU-DB

15-445/645 (Fall 2020)

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

APPEND-ONLY STORAGE
Main Table

VALUE POINTER

All the physical versions of a logical
tuple are stored in the same table

space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

£SCMU-DB

15-445/645 (Fall 2020)

»

<

A, | $777 o
A, $222 | @
B, $70 0
A, | $333 0

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N20)

— Must update index pointers for every new version.
— Do not have to traverse chain on look-ups.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TIME-TRAVEL STORAGE

Main Table

VALUE POINTER

Time-Travel Table

VALUE

» A, $222 O

B, $70

On every update, copy the
current version to the time-

travel table. Update pointers.

£SCMU-DB

15-445/645 (Fall 2020)

POINTER

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TIME-TRAVEL STORAGE

Main Table

VALUE POINTER

Time-Travel Table

VALUE

» A, $222 O

B, $70

On every update, copy the
current version to the time-

travel table. Update pointers.

£SCMU-DB

15-445/645 (Fall 2020)

POINTER

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TIME-TRAVEL STORAGE

Main Table

VALUE POINTER

.-

Time-Travel Table

A $7117] —

On every update, copy the
current version to the time-

travel table. Update pointers.

£SCMU-DB

15-445/645 (Fall 2020)

1
A, | $222 | e

Overwrite master version in
the main table and update
pointers.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TIME-TRAVEL STORAGE

Main Table

VALUE POINTER

.-

Time-Travel Table

A $7117] —

On every update, copy the
current version to the time-

travel table. Update pointers.

£SCMU-DB

15-445/645 (Fall 2020)

1
A, | $222 | e

Overwrite master version in
the main table and update
pointers.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

16

TIME-TRAVEL STORAGE

Main Table

VALUE POINTER

» A, | 8333 | e

B, $70

On every update, copy the
current version to the time-

travel table. Update pointers.

£SCMU-DB

15-445/645 (Fall 2020)

Time-Travel Table

VALUE POINTER

A, | s] B e

N A, | $222| @

Overwrite master version in
the main table and update
pointers.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

17

DELTA STORAGE

Main Table Delta Storage Segment

VALUE POINTER

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DELTA STORAGE

Main Table

VALUE POINTER

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

£SCMU-DB

15-445/645 (Fall 2020)

Delta Storage Segment

DELTA POINTER

A, (VALUE»$111) 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DELTA STORAGE

Main Table Delta Storage Segment

¥ A (VALUE»$111)| @

1
A, | (vaLUE»3222)| @

VALUE POINTER

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

17

DELTA STORAGE

Main Table

VALUE POINTER

Delta Storage Segment

A (VALUE»$111)| @

1

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

£SCMU-DB

15-445/645 (Fall 2020)

A, | (VALUE»$222)| @

Txns can recreate old
versions by applying the delta
in reverse order.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can "see" that version (SI).
— The version was created by an aborted txn.

Two additional design decisions:
— How to look for expired versions?
— How to decide when it is safe to reclaim memory?

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

GARBAGE COLLECTION

Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level

— Txns keep track of their old versions so the DBMS does
not have to scan tuples to determine visibility.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1
VERSION BEGIN END
TS(T,)=12
Aioo 7/ 9
Thread #2 B1oo 7 9
TS<T2)=25 B, 79 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1
Vacuum VERSION BEGIN END
TS (T1)=12 \ A 7 9
100
Thread #2 ‘ Bioo / J
TS<T2)=25/ o Bio1 79 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
$2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1
Vacuum VERSION BEGIN END
TS(TD=12~—y » A 7 g
100
Thread #2 ‘ Bioo / J
TS<T2)=25/ o B 79 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
$2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 e

TS(T)=12 =~
Thread #2 ‘ —
TS(T,)=25 — O »

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

VERSION BEGIN

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 e

TS(T)=12

VERSION BEGIN END

Thread #2 ‘ m—lp i
TS(T2)=25/ o » B, 79 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 -9
Vacuum »= é VERSION BEGIN END

TS(T1)=12 \ - T

oQ

Thread #2 ‘ - ?j-
15(T,)=25 =" O B [ew [10 | 2

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
$2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 -9
Vacuum — 3 VERSION BEGIN END

o

Thread #2 ‘ - ?j-
TS(T,)=25 =" O 25 [[0w] 2

¥

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
$2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1

Thread #2

TS(T,)=25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

A

A,

B,

B,

B,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only

works with O2N.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 ‘

TS(T,)=12 GET(A) A P oA, P

A2 |NDEX
Thread #2 — s, | 8, Pl &, P
TS(T,)=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1

TS(T,)=25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

¥

TS(T,)=12 N GET(A) ,v| z |->
Thread #2

A

A,

B,

>

B,

B,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only

works with O2N.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

20

TUPLE-LEVEL GC

Thread #1

TS(T,)=12 N GET(A) ,v| z |->
Thread #2

TS(T,)=25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

). G

Bo ™ B ™ B2 [Bs

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only

works with O2N.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1

TS(T,)=12 GET(A)
Thread #2

TS(T,)=25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

A,

B,

B,

B,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only

works with O2N.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1

TS(T,)=12 GET(A)
Thread #2

TS(T,)=25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.
§=CMuU-DB

15-445/645 (Fall 2020)

A,

B,

>

B,

>

B,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only

works with O2N.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INDEX MANAGEMENT

Primary key indexes point to version chain head.

— How often the DBMS must update the pkey index
depends on whether the system creates new versions
when a tuple is updated.

— If a txn updates a tuple's pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated...

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

JOIN THE TEAM MEET THE PEOPLE

ARCHITECTURE

WHY UBER ENGINEERING
SWITCHED FROM
POSTGRES TO MYSQL

BY EVAN KLITZKE

Secondary Index | A ‘ B ' C D

Primary Index

A
N

@)
§-N

L

Disk [| 010 []

76 103 107 21

£2CMUDB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://eng.uber.com/mysql-migration/

SECONDARY INDEXES

Approach #1: Logical Pointers

— Use a fixed identifier per tuple that does not change.
— Requires an extra indirection layer.
— Primary Key vs. Tuple Id

Approach #2: Physical Pointers

— Use the physical address to the version chain head.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INDEX POINTERS

A PRIMARY INDEX A& SECONDARY INDEX

Append-Onl
Aroa [P Aso [P Ass [Asy } Nre)\rl)vest-to-oxidest

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

GET(A)

A PRIMARY INDEX A& SECONDARY INDEX

Physical
Address

§=CMU-DB
15-445/645 (Fall 2020)

INDEX POINTERS

4" Asgo

}

Append-Only
Newest-to-Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A& SECONDARY INDEX
Physical
Address

Append-Onl
"l Aroo [Ass [Ass [Ao } Nre)\rl)vest-to-o)idest

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

24

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A& SECONDARY INDEX

A& SECONDARY INDEX
A SECONDARY INDEX

A SECONDARY INDI

\ 4
A Append-Only
"l Aroo [T 755 Agg [P Aoy } Newest-to-Oldest

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

Physical
Address

§=CMU-DB
15-445/645 (Fall 2020)

24

INDEX POINTERS

4 PRIMARY INDEX

¥ GET(A)

4 SECONDARY INDEX

Primary
Key

4" Asgo

Append-Only
| Aoy } Newest-to-Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

24

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A& SECONDARY INDEX

Tupleld

% Tupleld—Address

Physical

Address L{
Append-Onl
Ao [P Ass] Acs [Ao } Nre)\rl)vest-to-o)idest

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC INDEXES

MVCC DBMS indexes (usually) do not store

version information about tuples with their keys.
— Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from

different snapshots:
— The same key may point to different logical tuples in
different snapshots.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC DUPLICATE KEY PROBLEM

Index

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MVCC DUPLICATE KEY PROBLEM

Thread #1 Tl
Begin @ 10 60

READ(A) v ¥
Thread #2
Begin @ 20 E/i

UPDATE(A)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MVCC DUPLICATE KEY PROBLEM
Thread #1 Tl

Begin @ 10 60
READ(A) v I v

Thread #2

° \3
Begin @ 20 || x
UPDATE(A) [l DELETE(A)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MVCC DUPLICATE KEY PROBLEM
Thread #1 Tl

Begin @ 10 60
READ(A) v I v

Thread #2

Begin @ 20 E/f x
Commit @ 25 UPDATE(A) Bl DELETE(A)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MVCC DUPLICATE KEY PROBLEM

Thread #1
Begin @ 10

Thread #2
Begin @ 20
Commit @ 25

£SCMU-DB

15-445/645 (Fall 2020)

Index
\3
= X
UPDATE(A) Jll DELETE(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MVCC DUPLICATE KEY PROBLEM

Thread #1 Index
Begin @ 10 60
READ(A) ; ' .
Thread #2
Begin @ 20 C/f x
Commit @ 25 UPDATE(A) Bl DELETE(A)
Thread #3 A O— :_|

Begin @ 30 @] z 25 25 0
INSERT(A)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MVCC DUPLICATE KEY PROBLEM

Thread #1 Index

Begin @ 10 60

READ(A) ; ' .

Thread #2

Begin @ 20 C/f x

Commit @ 25 UPDATE(A) Bl DELETE(A)
Thread #3 A Q—:_l

Begin @ 30 @] z 25 25 0

INSERT(A) — A 30 (00 @

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

26

MVCC DUPLICATE KEY PROBLEM
Thread #1 Tl

Beginato [Ny P
READ(A) READ(A) 0 I v

Thread #2
Commit @ 25 UPDATE(A) Bl DELETE(A)
Thread #3
Begin @ 30
INSERT(A)

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC INDEXES

Each index's underlying data structure must
support the storage of non-unique keys.

Use additional execution logic to perform

conditional inserts for pkey / unique indexes.
— Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then must follow the pointers to find
the proper physical version.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC DELETES

The DBMS physically deletes a tuple from the
database only when all versions of a logically

deleted tuple are not visible.

— If a tuple is deleted, then there cannot be a new version of
that tuple after the newest version.

— No write-write conflicts / first-writer wins

We need a way to denote that tuple has been
logically delete at some point in time.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC DELETES

Approach #1: Deleted Flag

— Maintain a flag to indicate that the logical tuple has been
deleted after the newest physical version.

— Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple

— Create an empty physical version to indicate that a logical
tuple is deleted.

— Use a separate pool for tombstone tuples with only a
special bit pattern in version chain pointer to reduce the
storage overhead.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MVCC IMPLEMENTATIONS

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-0CC Append-Only - Physical
Hekaton MV-0CC Append-Only Cooperative Physical
MemSQL MV-0CC Append-Only Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical
HyPer MV-0CC Delta Txn-level Logical
CMU's TBD MV-0CC Delta Txn-level Logical

£SCMU-DB

15-445/645 (Fall 2020)

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://github.com/cmu-db/terrier

CONCLUSION

MVCC is the widely used scheme in DBMS:s.
Even systems that do not support multi-statement

txns (e.g., NoSQL) use it.

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

NEXT CLASS

No class on Wed November 11t

£SCMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

