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ADMINISTRIVIA

Project #3 is due Sun Nov 22nd @ 11:59pm.

Q&A Session on Wed Nov 11th @ 8:00pm
→ https://cmu.zoom.us/j/96880648178?pwd=Z0loZUVOR

VV1eURFc2R0aDR6QU5udz09

No class on Wed Nov 11th
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UPCOMING DATABASE TALKS

EraDB "Magical SuperIndexes"
→ Monday Nov 9th @ 5pm ET

FaunaDB Serverless DBMS
→ Monday Nov 16th @ 5pm ET

Confluent ksqlDB (Kafka)
→ Monday Nov 16th @ 5pm ET
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MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions 
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new 

version of that object. 
→ When a txn reads an object, it reads the newest version 

that existed when the txn started.
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MVCC HISTORY

Protocol was first proposed in 1978 MIT PhD 
dissertation.

First implementations was Rdb/VMS and 
InterBase at DEC in early 1980s. 
→ Both were by Jim Starkey, co-founder of NuoDB.
→ DEC Rdb/VMS is now "Oracle Rdb"
→ InterBase was open-sourced as Firebird.
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MULTI-VERSION CONCURRENCY CONTROL

Writers do not block readers.
Readers do not block writers.

Read-only txns can read a consistent snapshot
without acquiring locks.
→ Use timestamps to determine visibility.

Easily support time-travel queries.
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Version Value Begin End

A0 123 0 -

T
IM

E
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T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

TS(T1)=1 TS(T2)=2 Database
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TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

T1 reads version A0.

-2456A1

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

T2 2 Active

Txn Status Table

Version Value Begin End

A0 123 0 -

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #1

7

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

-2456A1

TS(T1)=1 TS(T2)=2 Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)
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T2 reads version A0
because T1 has not 
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https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0

T
IM

E
Schedule

T1 T2

MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TxnId Timestamp Status
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Active2T2

T2 must stall until T1
commits.
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MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

T1 reads version A1 that it 
wrote earlier.

-1456A1

TS(T1)=1 TS(T2)=2 Database

Active2T2
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TxnId Timestamp Status

T1 1 Active

Txn Status Table

Version Value Begin End

A0 123 0
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MVCC EXAMPLE #2

8

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1456A1 2

-2789A2

TS(T1)=1 TS(T2)=2 Database

Active2T2

Committed1T1

Now T2 can create the new 
version.
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MULTI-VERSION CONCURRENCY CONTROL

MVCC is more than just a concurrency control 
protocol. It completely affects how the DBMS 
manages transactions and the database.
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MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

Deletes
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CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency 
Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before 

they can read/write a logical tuple.
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VERSION STORAGE

The DBMS uses the tuples' pointer field to create a 
version chain per logical tuple.
→ This allows the DBMS to find the version that is visible 

to a particular txn at runtime.
→ Indexes always point to the "head" of the chain.

Different storage schemes determine where/what 
to store for each version.
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VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied 

into a separate delta record space.
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APPEND-ONLY STORAGE

All the physical versions of a logical 
tuple are stored in the same table 
space. The versions are inter-mixed.

On every update, append a new 
version of the tuple into an empty 
space in the table.

14

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

B1 $10 Ø
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APPEND-ONLY STORAGE

All the physical versions of a logical 
tuple are stored in the same table 
space. The versions are inter-mixed.

On every update, append a new 
version of the tuple into an empty 
space in the table.
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VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups. 

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups. 
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TIME-TRAVEL STORAGE

16

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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TIME-TRAVEL STORAGE
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TIME-TRAVEL STORAGE

16

Overwrite master version in 
the main table and update 
pointers.

Main Table
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Ø
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TIME-TRAVEL STORAGE

16

Overwrite master version in 
the main table and update 
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE
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A2 $222

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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TIME-TRAVEL STORAGE
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DELTA STORAGE

17

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.
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DELTA STORAGE

17

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) ØA2 $222

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.
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DELTA STORAGE

17

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.
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DELTA STORAGE

17

Txns can recreate old 
versions by applying the delta 
in reverse order.

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.
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GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical 
versions from the database over time.
→ No active txn in the DBMS can "see" that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?
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GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does 

not have to scan tuples to determine visibility.

19
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VERSION BEGIN END

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25
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TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)
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TUPLE-LEVEL GC
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Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
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TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1XGET(A)
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TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1X XGET(A)
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TUPLE-LEVEL GC

20

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Thread #1

TS(T1)=12

Thread #2

TS(T2)=25

Cooperative Cleaning:
Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)
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TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created 
by a finished txn are no longer visible.

21
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INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index 

depends on whether the system creates new versions 
when a tuple is updated.

→ If a txn updates a tuple's pkey attribute(s), then this is 
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

22
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SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

23
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INDEX POINTERS

24

PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

INDEX POINTERS
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PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97

GET(A)

Append-Only
Newest-to-Oldest

Physical 
Address
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INDEX POINTERS
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INDEX POINTERS
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PRIMARY INDEX SECONDARY INDEX

A100 A99 A98 A97
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address

TupleId

Physical 
Address
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MVCC INDEXES

MVCC DBMS indexes (usually) do not store 
version information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from 
different snapshots:
→ The same key may point to different logical tuples in 

different snapshots.
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MVCC DUPLICATE KEY PROBLEM

26

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

MVCC DUPLICATE KEY PROBLEM
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Index

Thread #2
Begin @ 20

VERSION

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10
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MVCC DUPLICATE KEY PROBLEM
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Ø

UPDATE(A)
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MVCC DUPLICATE KEY PROBLEM
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Ø
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MVCC INDEXES

Each index's underlying data structure must 
support the storage of non-unique keys. 

Use additional execution logic to perform 
conditional inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single 
fetch. They then must follow the pointers to find 
the proper physical version.
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MVCC DELETES

The DBMS physically deletes a tuple from the 
database only when all versions of a logically
deleted tuple are not visible.
→ If a tuple is deleted, then there cannot be a new version of 

that tuple after the newest version.
→ No write-write conflicts / first-writer wins

We need a way to denote that tuple has been 
logically delete at some point in time.
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MVCC DELETES

Approach #1: Deleted Flag
→ Maintain a flag to indicate that the logical tuple has been 

deleted after the newest physical version.
→ Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple
→ Create an empty physical version to indicate that a logical 

tuple is deleted.
→ Use a separate pool for tombstone tuples with only a 

special bit pattern in version chain pointer to reduce the 
storage overhead.
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MVCC IMPLEMENTATIONS

30

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

CMU's TBD MV-OCC Delta Txn-level Logical
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CONCLUSION

MVCC is the widely used scheme in DBMSs.
Even systems that do not support multi-statement 
txns (e.g., NoSQL) use it.
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NEXT CL ASS

No class on Wed November 11th
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