Carnegie Mellon University

2

o Intro to Database Systems Andy Pavlo
X AP

15-445/15-645 Computer Science
gy @ Fall 2020 Carnegie Mellon University

(3
e e
-
Yy

-~

N\ At ond L

Introduction to
Distributed Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #5: Sunday Dec 6™ @ 11:59pm
Project #4: Sunday Dec 13" @ 11:59pm

Potpourri + Review: Wednesday Dec 9™

— Vote for what system you want me to talk about.
https://cmudb.io/f20-systems

Final Exam:
— Session #1: Thursday Dec 17" @ 8:30am
— Session #2: Thursday Dec 17* @ 1:00pm

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://cmudb.io/f20-systems

UPCOMING DATABASE TALKS

Confluent ksqlDB (Kafka) @ CONELUENT
— Monday Nov 23" @ 5pm ET

Microsoft”

Microsoft SQL Server Optimizer B :
— Monday Nov 30® @ 5pm ET - SQL Server

Snowflake Lecture Jdb
— Monday Dec 7" @ 3:20pm ET z‘o's snow flake

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-confluent-ksqldb-a-stream-relational-database-system/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-microsoft-sql-server/
https://15445.courses.cs.cmu.edu/fall2020/schedule.html#dec-07-2020

PARALLEL VS. DISTRIBUTED

Parallel DBMSs:

— Nodes are physically close to each other.
— Nodes connected with high-speed LAN.
— Communication cost is assumed to be small.

Distributed DBMSs:

— Nodes can be far from each other.
— Nodes connected using public network.
— Communication cost and problems cannot be ignored.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction
processing and query execution in distributed

environments.

— Optimization & Planning
— Concurrency Control

— Logging & Recovery

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TODAY'S AGENDA

System Architectures

Design Issues

Partitioning Schemes

Distributed Concurrency Control

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SYSTEM ARCHITECTURE

A DBMS's system architecture specifies what
shared resources are directly accessible to CPUs.

This affects how CPUs coordinate with each other
and where they retrieve/store objects in the
database.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SYSTEM ARCHITECTURE

&%@

m

Network

o

Shared Shared Shared Shared
Everything Memory Disk Nothing

OCMU -DB

1111111111111111111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED MEMORY

CPUs have access to common
memory address space via a fast

interconnect.
— Each processor has a global view of all the %

in-memory data structures.
— Each DBMS instance on a processor has to

"know" about the other instances.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED DISK

10

All CPUs can access a single logical
disk directly via an interconnect, but

each have their own private

memories.

— (Can scale execution layer independently
from the storage layer.

— Must send messages between CPUs to
learn about their current state.

[RocksET| ORACLE gapr] presto . cloudera W NUO

ﬁ EXADATA IMPALA Go 8[€
ORACLE 1 Hort ks A PACHE Nb i
YugaByte e SR!!S& Q) StiicER HBASE ><snowflake Spanner

£2CMU-DB

15-445/645 (Fall 2020)

- amazon
REDSHIFT

Amazon
Aurora

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED DISK EXAMPLE

Node - [Storage
Page ABC
Get 1d=101 #@ nee
ZZZZEK

Application
Server Node)
of =

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

Application
Server

§=CMU-DB
15-445/645 (Fall 2020)

SHARED DISK EXAMPLE

Node |

| Get 1d=200

Page XYZ

[Storage N

d |cd

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED DISK EXAMPLE

%cidé} [Storage N
AR _ r .
lGetId_IOI Node) [Page ABC a a
Iz — % -
Application ’
Server Node | @
k-l |

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED DISK EXAMPLE

[st
Page ABC orage

Application g
Server Node | ¢
of [@

Update 101

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED DISK EXAMPLE

Node r
Page ABC
Update 101 #@ e
AR
ZzZam Node
ZZZZ3 K
Application

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED NOTHING

Each DBMS instance has its own
CPU, memory, and disk.

Nodes only communicate with each

other via network.

— Harder to scale capacity.
— Harder to ensure consistency.

12

e;etcd

— Better performance & efficiency. -
TERADATA Kinztica e - ¥ Exasol 5.
= » . (© citusdata
OSciDE YFAUNA IannIDB 0 Dgraph /WTCockroach LABS .mongoDB (4
M ApacHE
comdba ¥ GEODE FOUNDATIONDE ||| ClickHouse cassandra [:] Store VOLTDB CrateDB
¢@ YugaByte o 0 Assassin @Greenplum AMMEVSQL VERTICA

£2CMU-DB

15-445/645 (Fall 2020)

TiDB é redis RethinkDB || Clustrix (®) couchbase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

13

SHARED NOTHING EXAMPLE

Node]
#%g g P1-ID:1-150
L)

Get 1d=200

Application
Server

Node]
#@ﬂ @ IjZ-)ID: 151-300

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

13

SHARED NOTHING EXAMPLE

Node]
#%g g P1-ID:1-150
L)

Get 1d=200

S

Get 1d=10
Get 1d=200

Application

Server Node)
P2-»ID:151-300
+8g =

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SHARED NOTHING EXAMPLE

Application
Server

§=CMU-DB
15-445/645 (Fall 2020)

1-ID:1-100

3»ID:101-200

2>ID:201-300

— U L Ul 0 L J U0 |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

EARLY DISTRIBUTED DATABASE SYSTEMS

MUFFIN - UC Berkeley (1979)
SDD-1 - CCA (1979)
System R* — IBM Research (1984)

Gamma - Univ. of Wisconsin (1986)
NonStop SQL - Tandem (1987)

§2CMU-DB Gray

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DESIGN ISSUES

How does the application find data?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How does the DBMS ensure correctness?

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HOMOGENOUS VS. HETEROGENOUS

Approach #1: Homogenous Nodes

— Every node in the cluster can perform the same set of
tasks (albeit on potentially different partitions of data).

— Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes

— Nodes are assigned specific tasks.

— Can allow a single physical node to host multiple "virtual"
node types for dedicated tasks.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

MONGODB HETEROGENOUS ARCHITECTURE
Shards (mongod)

Router
(mongos)
Get 1d=101
ﬂj Router

Application
Server

Config Server |jEAEOEEL
(mongod) P2->ID:101-200

. P3->ID:201-300

$2CMUDB . P4->ID:301-400

15-445/645 (Fall 2020,)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DATA TRANSPARENCY

Users should not be required to know where data
is physically located, how tables are partitioned
or replicated.

A query that works on a single-node DBMS
should work the same on a distributed DBMS.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DATABASE PARTITIONING

Split database across multiple resources:

— Disks, nodes, processors.
— Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce
a single answer.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space
for an entire table.

[deal if queries never join data across tables stored
on different nodes and access patterns are uniform.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

21

NAIVE TABLE PARTITIONING

Tablel Table?2 Partitions

SAS
SHS

Ideal Query:
SELECT * FROM table

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

21

NAIVE TABLE PARTITIONING

Tablel Table?2 Partitions

SAS
SHS

Ideal Query:
SELECT * FROM table

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

21

NAIVE TABLE PARTITIONING

Tablel Table?2 Partitions

Ideal Query:
SELECT * FROM table

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets.

— Choose column(s) that divides the database equally in
terms of size, load, or usage.

— Hash Partitioning, Range Partitioning

The DBMS can partition a database physical
(shared nothing) or logically (shared disk).

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

HORIZONTAL PARTITIONING

Partitioning Key Jrable1 Partitions
101 ja XXX 12019-11-29]| hash(a)%4 = P2

102 |b XXY |2019-11-28| hash(b)%4 = P4

103 |c XYZ |2019-11-29| hash(c)%4 = P3 @ g
104 |d XYX hash(d)%4 = P2

2019-11-27
105 |e XYY |2019-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

HORIZONTAL PARTITIONING

Partitioning Key rablel Partitions

ETERN SRR RPN EEETIET R
A e e A R _
N N0/ hash(b)%4 = P4

hash(a)%4 = P2

3| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

hash(c)%4 = P3 @ @
hash(d)%4 = P2

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

HORIZONTAL PARTITIONING

Partitioning Key T Sy i
artitions
—_<rablel

101 |a XXX |2019-11-29| hash(a)%4 = P2

102 |b XXY |2019-11-28| hash(b)%4 = P4

103 |c XYZ |2019-11-29| hash(c)%4 = P3

104 |d XYX |2019-11-27| hash(d)%4 = P2

105 |e XYY |2019-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

HORIZONTAL PARTITIONING

Partitioning Key T Sy i
artitions
—_<rablel

101 |a XXX |2019-11-29| hash(a)%4 = P2

102 |b XXY |2019-11-28| hash(b)%4 = P4

103 |c XYZ |2019-11-29| hash(c)%4 = P3

104 |d XYX |2019-11-27| hash(d)%4 = P2

105 |e XYY |2019-11-29| hash(e)%4 = P1

Ideal Query:
SELECT * FROM table

WHERE!partitionKey = ?!
§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

23

HORIZONTAL PARTITIONING

Partitioning Key T Sy i
artitions
—_<rablel

101 |a XXX |2019-11-29| hash(a)%4 = P2

102 |b XXY |2019-11-28| hash(b)%4 = P4

103 |c XYZ |2019-11-29| hash(c)%4 = P3

104 |d XYX |2019-11-27| hash(d)%4 = P2

105 |e XYY |2019-11-29| hash(e)%4 = P1

Ideal Query:
SELECT * FROM table

WHERE!partitionKey = ?!
§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

HORIZONTAL PARTITIONING

Partitioning Key T Sy i
artition
—_<rablel ons

101 |a XXX |2019-11-29| hash(a)%5 = P4

102 |b XXY |2019-11-28| hash(b)%5 = P3

103 |c XYZ |2019-11-29| hash(c)%5 = P5

104 |d XYX [2019-11-27| hash(d)%5 = P1

105 |e XYY |2019-11-29| hash(e)%5 = P3

Ideal Query:
SELECT * FROM table

WHERE!partitionKey = ?!
§=CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING
1.0 hash(keyl)

N

P1

P2

$2CMU-DB 0.5
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING
1.0 hash(keyl)

hash(key2)

$2CMU-DB 0.5
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING
1.0 hash(keyl)

hash(key2)

$2CMU-DB 0.5
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING
1,0

S
——
N—

If hash(key)=P4

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING

1,0
P5

P1

P2

£2CMU-DB 0.5

15-445/645 (Fall 2020)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING

1,0
P5

P1

P2

£2CMU-DB 0.5

15-445/645 (Fall 2020)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING

1,0
P5 Replication Factor = 3

P1

P2

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING
1.0 hash(keyl)

Replication Factor = 3

£2CMU-DB 0.5

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONSISTENT HASHING
1.0 hash(keyl)

Replication Factor = 3

.*

AN cassandra

amazon
DynamoDB

£2CMU-DB 0.5

15-445/645 (Fall 2020)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LOGICAL PARTITIONING

%:O_(% [Storage
Id=1
Id=2
Id=3
Application Id=4
Server Node | g
kil |

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LOGICAL PARTITIONING

Node Id=1

[Storage

Get 1d=1 #@ S a a

Id=1
Id=2
Id=3
Application Id=4

Server Node)
#@ Td=3
|) Id=4

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

LOGICAL PARTITIONING

Node |

Id=1

Id=2

Application
Server

§=CMU-DB
15-445/645 (Fall 2020)

Id=3

I1d=4

[Storage

d lid

Id=1
Id=2
Id=3
Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PHYSICAL PARTITIONING

Node s |

L:3°

Get Id=1

AR

K

K

7

Application
Server Node e |
Id=3

o3 o

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

PHYSICAL PARTITIONING

Node s |

of@ 5

Application
Server

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS does not need coordinate the behavior
concurrent txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

30

TP MONITORS

A TP Monitor is an example of a centralized
coordinator for distributed DBMSs.

Originally developed in the 1970-80s to provide

txns between terminals and mainframe databases.
— Examples: ATMs, Airline Reservations.

Many DBMSs now support the same functionality
internally.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Teleprocessing_monitor

31

CENTRALIZED COORDINATOR

..
Partitions

Application
Server

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CENTRALIZED COORDINATOR

Lock Request

Application
Server

£2CMU-DB

15-445/645 (Fall 2020)

Coordinator

P1

P2

P3

P4

Partitions

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

31

CENTRALIZED COORDINATOR

a P1

Coordinator P2 N
@ P3 Partitions
A r4

Lock Request

Application
Server

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

31

CENTRALIZED COORDINATOR

a P1

Coordinator P2 N
@ P3 Partitions
A r4

Lock Request

—

Acknowledgement

A
7
7
[zg ol
Application
Server

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

31

CENTRALIZED COORDINATOR

Commit Request

Coordinator P2

T

Application
Server

Safe to commit?

£2CMU-DB

15-445/645 (Fall 2020)

a P1

a p3 Partitions
A r4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

31

CENTRALIZED COORDINATOR

a P1

Coordinator P2 N
f P3 Partitions
A r4

Commit Request

—

ﬁ Acknowledgement R
73 4 RN
Apsp élfvaé[:’O : Safe to commit?

L] =
TRANSARC®
@ CMU-DB . : Iif;;f echnc Work
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

32

CENTRALIZED COORDINATOR

Partitions

Query Requests

2.1eMa|PPIIA

Application
Server

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

32

CENTRALIZED COORDINATOR

Partitions

Query Requests

2.1eMa|PPIIA

Application P1-ID:1-100 @
Server P2->ID: 101-200

P3+1D:201-300 @
P4>ID:301-400 @

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

32

CENTRALIZED COORDINATOR

Partitions

Query Requests

2.1eMa|PPIIA

Application P1-ID:1-100 @
Server P2->ID: 101-200

P3+1D:201-300 @
P4>ID:301-400 @

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CENTRALIZED COORDINATOR

Commit Request

Partitions

Safe to commit?

Application
Server

£2CMU-DB

15-445/645 (Fall 2020)

2.1eMa|PPIIA

P1-ID:1-100 @

P2->ID:101-200

P3+1D:201-300 @

P4>ID:301-400 @

IS
*

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

33

DECENTRALIZED COORDINATOR

W& Master Node | Partitions

\

Begin Request

N —

Application
Server

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

33

DECENTRALIZED COORDINATOR

W& Master Node | Partitions

\N

>
| p1 |/

1

AR L
[z -’
m\ Query Request \ 4

Server

7
Application Xi@

\ S

§=CMU-DB
15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

33

DECENTRALIZED COORDINATOR

W& Master Node | Partitions

\

Commit Request
7 —
Iz Safe to commit?
Application I\

Server

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute

simultaneously across multiple nodes.

— Many of the same protocols from single-node DBMSs
can be adapted.

This is harder because of:

— Replication.

— Network Communication Overhead.
— Node Failures.

— Clock Skew.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DISTRIBUTED 2PL

AR
73K
Set A=2 Set B=7 Iz
Application Application

|
|
|
|
|
|
|
|
:
Server : Server
|
|
|
|
|
|
|
|
|
|

§=CMU-DB
15-445/645 (Fall 2020)

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DISTRIBUTED 2PL

AR
73K
Set A=2 Set B=7 Iz
Application Application

|
|
|
|
|
|
|
|
:
Server : Server
|
|
|
|
|
|
|
|
|
|

§=CMU-DB
15-445/645 (Fall 2020)

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

35

DISTRIBUTED 2PL

: AR
| R
Application | Application
Server set B=9 | Set A=0 Server
:

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

DISTRIBUTED 2PL
W aits-For Graph

73K
P
QI
- - Application
_
0 Server

Application
Server

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

CONCLUSION

[have barely scratched the surface on distributed
database systems...

It is hard to get this right.

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

NEXT CLASS

Distributed OLTP Systems
Replication

CAP Theorem
Real-World Examples

£2CMU-DB

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

