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FINAL EXAM

Who: You

What: Final Exam

Where: Gradescope + OHQueue + Google Doc

When: Thu Dec 17th (Two Sessions)

Why: https://youtu.be/yCotpBAqJho

https://15445.courses.cs.cmu.edu/fall2020/final-
guide.html
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FINAL EXAM

Two Exam Sessions:
→ Session #1: Thu Dec 17th @ 8:30am ET
→ Session #2: Thu Dec 17th @ 8:00pm ET
→ I will email you to confirm your session.

Exam will be available on Gradescope.

Please email Andy if you need special 
accommodations.
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FINAL EXAM

Exam covers all lecture material in the entire 
course but will emphasize topics after mid-term.

Open book/notes/calculator.

You are not required to turn on your video during 
the video.

We will answer clarification questions via OHQ 
and post announcements on a Google Doc.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

COURSE EVALS

Your feedback is strongly needed:
→ https://cmu.smartevals.com
→ https://www.ugrad.cs.cmu.edu/ta/F20/feedback/

Things that we want feedback on:
→ Homework Assignments
→ Projects
→ Reading Materials
→ Lectures
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OFFICE HOURS

Andy's hours:
→ Monday Dec 14th @ 3:20-4:40pm
→ Mon Dec 14th + Wed Dec 16th @ 10pm:

https://calendly.com/andy-pavlo/f20-andy-after-dark
→ Or by appointment

All TAs will have their regular office hours up to 
and including Saturday Dec 12th
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STUFF BEFORE MID -TERM

SQL

Buffer Pool Management

Hash Tables

B+Trees

Storage Models

Inter-Query Parallelism
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TRANSACTIONS

ACID

Conflict Serializability:
→ How to check?
→ How to ensure?

View Serializability

Recoverable Schedules

Isolation Levels / Anomalies
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TRANSACTIONS

Two-Phase Locking
→ Rigorous vs. Non-Rigorous
→ Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks
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TRANSACTIONS

Timestamp Ordering Concurrency Control
→ Thomas Write Rule

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection
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CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Write-Ahead Logging

Logging Schemes

Checkpoints

ARIES Recovery
→ Log Sequence Numbers
→ CLRs
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DISTRIBUTED DATABASES

System Architectures

Replication

Partitioning Schemes

Two-Phase Commit
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HISTORY

Amazon publishes a paper in 2007 on 
the original Dynamo system.
→ Eventually consistency key/value store
→ Shared-nothing architecture
→ Non-SQL API, no joins, no transactions
→ Partitions based on consistent hashing

Amazon makes DynamoDB available 
to customers on AWS in 2012.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf


15-445/645 (Fall 2020)

CONSISTENT HASHING
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CONSISTENT HASHING
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CONSISTENT HASHING
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CONSISTENT HASHING
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DYNAMODB DATA MODEL

DynamoDB supports a subset of the relational 
model:
→ A table definition includes the set of attributes that the 

table's records must contain.
→ You cannot specify constraints (integrity, foreign key).

Tables support two types of primary keys:
→ Single Partition Key
→ Composite Partition Key + Sort Key
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DYNAMODB SECONDARY INDEXES

Local Secondary Index
→ Use the partition key to initially route the request to a

node.
→ Each node maintains a local B+Tree that only contains 

keys for the records stored at that node.

Global Secondary Index
→ Uses a partition key + sort key that is different than the 

table's primary key.
→ Not guaranteed to be consistent with the table.
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DYNAMODB API

Access the database using API calls.
→ Application must perform additional 

operations client-side if they need 
functionality beyond provided API.

Modification API calls support 
application-specified conditionals to 
deal with eventual consistency issues.

21

GetItem

BatchGetItem

Scan

Query

PutItem

BatchWriteItem

UpdateItem

DeleteItem

Read Data

Modify Data
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DYNAMODB TRANSACTIONS

In 2018, Amazon announced support 
for client-side transaction support in 
DynamoDB.
→ Centralized Middleware Coordinator

Called "single-shot" transactions 
because you need to know your 
read/write set before the transaction 
starts.
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TransactionGetItems(
Get(table:T1, key:k1),
Get(table:T2, key:k2),
Get(table:T3, key:k3)

)

TransactionWriteItems(
Put(table:T1, key:k1, value:v1),
Delete(table:T2, key:k2),
Update(table:T3, key:k3),
Check(table:T3, key:k3, value:<100)

)

Source: Doug Terry
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DYNAMODB TRANSACTIONS

Move $100 from Andy' bank account to his 
promotor's account.

23

BEGIN
A = A – 100
B = B + 100
COMMIT

A = Get(person:"Andy")
B = Get(person:"Bookie")
TransactionWriteItems(
Check(person:"Andy", balance:A),
Check(person:"Bookie", balance:B),
Put(person:"Andy", balance:A-100),
Put(person:"Bookie", balance:B+100)

)

Source: Doug Terry
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HISTORY

After Amazon published the Dynamo paper in 
2007, people at Facebook start writing a clone 
called Cassandra in 2008 for their message service.
→ Decided to not use the DBMS and instead released the 

source code.

Picked up by organizations outside of Facebook 
and then became an Apache project in 2009.
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APACHE CASSANDRA

Borrows a lot of ideas from other systems:
→ Eventual Consistency
→ Shared-Nothing
→ Consistent Hashing (Amazon Dynamo)
→ Column-Family Data Model (Google BigTable)
→ Log-structured Merge Trees

Originally one of the main proponents of the 
NoSQL movement but now pushing CQL.
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LSM STORAGE MODEL

The log is the database.
→ DBMS reads log to reconstruct the

record for a read.

MemTable: In-memory cache

SSTables:
→ Read-only portions of the log.
→ Use indexes + Bloom filters to speed up reads
→ See the CMU-DB RocksDB talk (2015)

http://cmudb.io/lectures2015-rocksdb
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MONGODB

Distributed document DBMS started in 2007.
→ Document → Tuple 
→ Collection → Table/Relation

Open-source (Server Side Public License)

Centralized shared-nothing architecture.

Concurrency Control:
→ OCC with multi-granular locking
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PHYSICAL DENORMALIZATION

A CUSTOMER has one or more ORDER
records. Each ORDER record has one or 
more  ORDER_ITEM records.

31

Customers

Orders

Order Items

R2(orderId,custId,…)

R1(custId,name,…)

R3(itemId,orderId,…)

⨝

⨝
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PHYSICAL DENORMALIZATION

A CUSTOMER has one or more ORDER
records. Each ORDER record has one or 
more  ORDER_ITEM records.

31

Customers

Orders

Order Items

Customer

OrdersOrdersOrder

Order Item

Order Item
⋮
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PHYSICAL DENORMALIZATION

A CUSTOMER has one or more ORDER
records. Each ORDER record has one or 
more  ORDER_ITEM records.
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Customers

Orders

Order Items

{
"custId": 1234,
"custName": "Andy",
"orders": [
{ "orderId": 9999,

"orderItems": [
{ "itemId": "XXXX",

"price":  19.99 },
{ "itemId": "YYYY",

"price":  29.99 },
] }

]
}
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QUERY EXECUTION

JSON-only query API

No cost-based query planner / optimizer.
→ Heuristic-based + "random walk" optimization.

JavaScript UDFs (not encouraged).

Supports server-side joins (only left-outer?).

Multi-document transactions.
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DISTRIBUTED ARCHITECTURE

Heterogeneous distributed components.
→ Shared nothing architecture
→ Centralized query router.

Master-slave replication.

Auto-sharding:
→ Define 'partitioning' attributes for each collection (hash 

or range).
→ When a shard gets too big, the DBMS automatically splits 

the shard and rebalances.
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MONGODB CLUSTER ARCHITECTURE

34

Router 
(mongos)

Shards (mongod)

P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Config Server 
(mongod)

Router 
(mongos)

⋮

⋮

Application
Server

Get Id=101
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STORAGE ARCHITECTURE

Originally used mmap storage manager
→ No buffer pool.
→ Let the OS decide when to flush pages.
→ Single lock per database.

MongoDB v3 supports pluggable storage backends
→ WiredTiger from BerkeleyDB alumni.

http://cmudb.io/lectures2015-wiredtiger
→ RocksDB from Facebook (“MongoRocks”)

http://cmudb.io/lectures2015-rocksdb
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MANGODB

Single-node satirical implementation of MongoDB 
written in Python.
→ Only supports MongoDB wire protocol v2

All data is written to /dev/null

https://github.com/dcramer/mangodb
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ANDY'S  CONCLUDING REMARKS

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good 
understanding how these systems work.

This will allow you to make informed decisions 
throughout your entire career.
→ Avoid premature optimizations.
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