
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

26 Final Review +
Systems Potpourri

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2020)

FINAL EXAM

Who: You

What: Final Exam

Where: Gradescope + OHQueue + Google Doc

When: Thu Dec 17th (Two Sessions)

Why: https://youtu.be/yCotpBAqJho

https://15445.courses.cs.cmu.edu/fall2020/final-
guide.html

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://youtu.be/yCotpBAqJho
https://15445.courses.cs.cmu.edu/fall2020/final-guide.html

15-445/645 (Fall 2020)

FINAL EXAM

Two Exam Sessions:
→ Session #1: Thu Dec 17th @ 8:30am ET
→ Session #2: Thu Dec 17th @ 8:00pm ET
→ I will email you to confirm your session.

Exam will be available on Gradescope.

Please email Andy if you need special
accommodations.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

FINAL EXAM

Exam covers all lecture material in the entire
course but will emphasize topics after mid-term.

Open book/notes/calculator.

You are not required to turn on your video during
the video.

We will answer clarification questions via OHQ
and post announcements on a Google Doc.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

COURSE EVALS

Your feedback is strongly needed:
→ https://cmu.smartevals.com
→ https://www.ugrad.cs.cmu.edu/ta/F20/feedback/

Things that we want feedback on:
→ Homework Assignments
→ Projects
→ Reading Materials
→ Lectures

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://cmu.smartevals.com/
https://www.ugrad.cs.cmu.edu/ta/F20/feedback/

15-445/645 (Fall 2020)

OFFICE HOURS

Andy's hours:
→ Monday Dec 14th @ 3:20-4:40pm
→ Mon Dec 14th + Wed Dec 16th @ 10pm:

https://calendly.com/andy-pavlo/f20-andy-after-dark
→ Or by appointment

All TAs will have their regular office hours up to
and including Saturday Dec 12th

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://calendly.com/andy-pavlo/f20-andy-after-dark

15-445/645 (Fall 2020)

STUFF BEFORE MID -TERM

SQL

Buffer Pool Management

Hash Tables

B+Trees

Storage Models

Inter-Query Parallelism

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTIONS

ACID

Conflict Serializability:
→ How to check?
→ How to ensure?

View Serializability

Recoverable Schedules

Isolation Levels / Anomalies

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTIONS

Two-Phase Locking
→ Rigorous vs. Non-Rigorous
→ Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

TRANSACTIONS

Timestamp Ordering Concurrency Control
→ Thomas Write Rule

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Write-Ahead Logging

Logging Schemes

Checkpoints

ARIES Recovery
→ Log Sequence Numbers
→ CLRs

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DISTRIBUTED DATABASES

System Architectures

Replication

Partitioning Schemes

Two-Phase Commit

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

26

25

24

18

18

17

12

11

10

10

152018
20

19

18

17

17

17

17

16

15

15

2019
18

15

14

13

13

12

11

11

9

9

2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HISTORY

Amazon publishes a paper in 2007 on
the original Dynamo system.
→ Eventually consistency key/value store
→ Shared-nothing architecture
→ Non-SQL API, no joins, no transactions
→ Partitions based on consistent hashing

Amazon makes DynamoDB available
to customers on AWS in 2012.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

15-445/645 (Fall 2020)

CONSISTENT HASHING

18

01

0.5

hash(key2)

hash(key1)

P1

P3

P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONSISTENT HASHING

18

01

0.5

If hash(key)=P4

P1

P3

P4
P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONSISTENT HASHING

18

01

0.5

P5

P1

P3

P4
P2

P6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

CONSISTENT HASHING

18

01

0.5

Replication Factor = 3

hash(key1)

P5

P1

P3

P4
P2

P6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DYNAMODB DATA MODEL

DynamoDB supports a subset of the relational
model:
→ A table definition includes the set of attributes that the

table's records must contain.
→ You cannot specify constraints (integrity, foreign key).

Tables support two types of primary keys:
→ Single Partition Key
→ Composite Partition Key + Sort Key

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://aws.amazon.com/blogs/database/using-sort-keys-to-organize-data-in-amazon-dynamodb/

15-445/645 (Fall 2020)

DYNAMODB SECONDARY INDEXES

Local Secondary Index
→ Use the partition key to initially route the request to a

node.
→ Each node maintains a local B+Tree that only contains

keys for the records stored at that node.

Global Secondary Index
→ Uses a partition key + sort key that is different than the

table's primary key.
→ Not guaranteed to be consistent with the table.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DYNAMODB API

Access the database using API calls.
→ Application must perform additional

operations client-side if they need
functionality beyond provided API.

Modification API calls support
application-specified conditionals to
deal with eventual consistency issues.

21

GetItem

BatchGetItem

Scan

Query

PutItem

BatchWriteItem

UpdateItem

DeleteItem

Read Data

Modify Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

15-445/645 (Fall 2020)

DYNAMODB TRANSACTIONS

In 2018, Amazon announced support
for client-side transaction support in
DynamoDB.
→ Centralized Middleware Coordinator

Called "single-shot" transactions
because you need to know your
read/write set before the transaction
starts.

22

TransactionGetItems(
Get(table:T1, key:k1),
Get(table:T2, key:k2),
Get(table:T3, key:k3)

)

TransactionWriteItems(
Put(table:T1, key:k1, value:v1),
Delete(table:T2, key:k2),
Update(table:T3, key:k3),
Check(table:T3, key:k3, value:<100)

)

Source: Doug Terry

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=CK6h48zOY9k

15-445/645 (Fall 2020)

DYNAMODB TRANSACTIONS

Move $100 from Andy' bank account to his
promotor's account.

23

BEGIN
A = A – 100
B = B + 100
COMMIT

A = Get(person:"Andy")
B = Get(person:"Bookie")
TransactionWriteItems(
Check(person:"Andy", balance:A),
Check(person:"Bookie", balance:B),
Put(person:"Andy", balance:A-100),
Put(person:"Bookie", balance:B+100)

)

Source: Doug Terry

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=CK6h48zOY9k

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

HISTORY

After Amazon published the Dynamo paper in
2007, people at Facebook start writing a clone
called Cassandra in 2008 for their message service.
→ Decided to not use the DBMS and instead released the

source code.

Picked up by organizations outside of Facebook
and then became an Apache project in 2009.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

APACHE CASSANDRA

Borrows a lot of ideas from other systems:
→ Eventual Consistency
→ Shared-Nothing
→ Consistent Hashing (Amazon Dynamo)
→ Column-Family Data Model (Google BigTable)
→ Log-structured Merge Trees

Originally one of the main proponents of the
NoSQL movement but now pushing CQL.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://cassandra.apache.org/doc/latest/cql/

15-445/645 (Fall 2020)

LSM STORAGE MODEL

The log is the database.
→ DBMS reads log to reconstruct the

record for a read.

MemTable: In-memory cache

SSTables:
→ Read-only portions of the log.
→ Use indexes + Bloom filters to speed up reads
→ See the CMU-DB RocksDB talk (2015)

http://cmudb.io/lectures2015-rocksdb

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://cmudb.io/lectures2015-rocksdb

15-445/645 (Fall 2020)

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MONGODB

Distributed document DBMS started in 2007.
→ Document → Tuple
→ Collection → Table/Relation

Open-source (Server Side Public License)

Centralized shared-nothing architecture.

Concurrency Control:
→ OCC with multi-granular locking

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PHYSICAL DENORMALIZATION

A CUSTOMER has one or more ORDER
records. Each ORDER record has one or
more ORDER_ITEM records.

31

Customers

Orders

Order Items

R2(orderId,custId,…)

R1(custId,name,…)

R3(itemId,orderId,…)

⨝

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PHYSICAL DENORMALIZATION

A CUSTOMER has one or more ORDER
records. Each ORDER record has one or
more ORDER_ITEM records.

31

Customers

Orders

Order Items

Customer

OrdersOrdersOrder

Order Item

Order Item
⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

PHYSICAL DENORMALIZATION

A CUSTOMER has one or more ORDER
records. Each ORDER record has one or
more ORDER_ITEM records.

31

Customers

Orders

Order Items

{
"custId": 1234,
"custName": "Andy",
"orders": [
{ "orderId": 9999,

"orderItems": [
{ "itemId": "XXXX",

"price": 19.99 },
{ "itemId": "YYYY",

"price": 29.99 },
] }

]
}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

QUERY EXECUTION

JSON-only query API

No cost-based query planner / optimizer.
→ Heuristic-based + "random walk" optimization.

JavaScript UDFs (not encouraged).

Supports server-side joins (only left-outer?).

Multi-document transactions.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

DISTRIBUTED ARCHITECTURE

Heterogeneous distributed components.
→ Shared nothing architecture
→ Centralized query router.

Master-slave replication.

Auto-sharding:
→ Define 'partitioning' attributes for each collection (hash

or range).
→ When a shard gets too big, the DBMS automatically splits

the shard and rebalances.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

MONGODB CLUSTER ARCHITECTURE

34

Router
(mongos)

Shards (mongod)

P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Config Server
(mongod)

Router
(mongos)

⋮

⋮

Application
Server

Get Id=101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

15-445/645 (Fall 2020)

STORAGE ARCHITECTURE

Originally used mmap storage manager
→ No buffer pool.
→ Let the OS decide when to flush pages.
→ Single lock per database.

MongoDB v3 supports pluggable storage backends
→ WiredTiger from BerkeleyDB alumni.

http://cmudb.io/lectures2015-wiredtiger
→ RocksDB from Facebook (“MongoRocks”)

http://cmudb.io/lectures2015-rocksdb

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
http://cmudb.io/lectures2015-wiredtiger
http://cmudb.io/lectures2015-rocksdb

15-445/645 (Fall 2020)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://github.com/dcramer/mangodb

15-445/645 (Fall 2020)

MANGODB

Single-node satirical implementation of MongoDB
written in Python.
→ Only supports MongoDB wire protocol v2

All data is written to /dev/null

https://github.com/dcramer/mangodb

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://github.com/dcramer/mangodb

15-445/645 (Fall 2020)

ANDY'S CONCLUDING REMARKS

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good
understanding how these systems work.

This will allow you to make informed decisions
throughout your entire career.
→ Avoid premature optimizations.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

