
Lecture #02: Intermediate SQL
15-445/645 Database Systems (Fall 2021)

https://15445.courses.cs.cmu.edu/fall2021/
Carnegie Mellon University

Andrew Crotty

1 Relational Languages
Edgar Codd published a major paper on relational models in the early 1970s. Originally, he only defined the
mathematical notation for how a DBMS could execute queries on a relational model DBMS.

The user only needs to specify the result that they want using a declarative language (i.e., SQL). The DBMS
is responsible for determining the most efficient plan to produce that answer.

Relational algebra is based on sets (unordered, no duplicates). SQL is based on bags (unordered, allows
duplicates).

2 SQL History
Declarative query lanaguage for relational databases. It was originally developed in the 1970s as part of the
IBM System R project. IBM originally called it “SEQUEL” (Structured English Query Language). The
name changed in the 1980s to just “SQL” (Structured Query Language).

The language is comprised of different classes of commands:

1. Data Manipulation Language (DML): SELECT, INSERT, UPDATE, and DELETE statements.
2. Data Definition Language (DDL): Schema definitions for tables, indexes, views, and other objects.
3. Data Control Language (DCL): Security, access controls.

SQL is not a dead language. It is being updated with new features every couple of years. SQL-92 is the
minimum that a DBMS has to support to claim they support SQL. Each vendor follows the standard to a
certain degree but there are many proprietary extensions.

Some of the major updates released with each new edition of the SQL standard are shown below.

• SQL:1999 Regular expressions, Triggers
• SQL:2003 XML, Windows, Sequences
• SQL:2008 Truncation, Fancy sorting
• SQL:2011 Temporal DBs, Pipelined DML
• SQL:2016 JSON, Polymorphic tables

3 Joins
Combines columns from one or more tables and produces a new table. Used to express queries that involve
data that spans multiple tables.

Example: Which students got an A in 15-721?

https://15445.courses.cs.cmu.edu/fall2021/
https://15445.courses.cs.cmu.edu/fall2021/
https://www.cs.cmu.edu/directory/andrewcr/
https://en.wikipedia.org/wiki/Edgar_F._Codd

Fall 2021 – Lecture #02 Intermediate SQL

CREATE TABLE student (
sid INT PRIMARY KEY,
name VARCHAR(16),
login VARCHAR(32) UNIQUE,
age SMALLINT,
gpa FLOAT

);

CREATE TABLE course (
cid VARCHAR(32) PRIMARY KEY,
name VARCHAR(32) NOT NULL

);

CREATE TABLE enrolled (
sid INT REFERENCES student (sid),
cid VARCHAR(32) REFERENCES course (cid),
grade CHAR(1)

);

Figure 1: Example database used for lecture

SELECT s.name
FROM enrolled AS e, student AS s
WHERE e.grade = 'A' AND e.cid = '15-721'
AND e.sid = s.sid;

4 Aggregates
An aggregation function takes in a bag of tuples as its input and then produces a single scalar value as its
output. Aggregate functions can (almost) only be used in a SELECT output list.

• AVG(COL): The average of the values in COL
• MIN(COL): The minimum value in COL
• MAX(COL): The maximum value in COL
• COUNT(COL): The number of tuples in the relation

Example: Get # of students with a ‘@cs’ login.

The following three queries are equivalent:

SELECT COUNT(*) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(login) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(1) FROM student WHERE login LIKE '%@cs';

Can use multiple aggregates within a single SELECT statement:

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs';

15-445/645 Database Systems
Page 2 of 7

https://15445.courses.cs.cmu.edu/fall2021/

Fall 2021 – Lecture #02 Intermediate SQL

Some aggregate functions support the DISTINCT keyword:

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs';

Output of other columns outside of an aggregate is undefined (e.cid is undefined below).

Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid;

Non-aggregated values in SELECT output clause must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid;

The HAVING clause filters output results based on aggregation computation. This make HAVING behave like
a WHERE clause for a GROUP BY.

Example: Get the set of courses in which the average student GPA is greater than 3.9.

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

The above query syntax is supported by many major database systems, but is not compliant with the SQL
standard. To make the query standard compliant, we must repeat use of AVG(S.GPA) in the body of the
HAVING clause.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

5 String Operations
The SQL standard says that strings are case sensitive and single-quotes only. There are functions to ma-
nipulate strings that can be used in any part of a query.

Pattern Matching: The LIKE keyword is used for string matching in predicates.

• “%” matches any substrings (including empty).
• “ ” matches any one character.

Concatenation: Two vertical bars (“||”) will concatenate two or more strings together into a single string.

15-445/645 Database Systems
Page 3 of 7

https://15445.courses.cs.cmu.edu/fall2021/

Fall 2021 – Lecture #02 Intermediate SQL

String Functions SQL-92 defines string functions. Many database systems implement other functions in
addition to those in the standard. Examples of standard string functions include SUBSTRING(S, B, E) and
UPPER(S).

6 Date and Time
Operations to manipulate DATE and TIME attributes. Can be used in either output or predicates. The specific
syntax for date and time operations varies wildly across systems.

7 Output Redirection
Instead of having the result a query returned to the client (e.g., terminal), you can tell the DBMS to store the
results into another table. You can then access this data in subsequent queries.

• New Table: Store the output of the query into a new (permanent) table.

SELECT DISTINCT cid INTO CourseIds FROM enrolled;

• Existing Table: Store the output of the query into a table that already exists in the database. The
target table must have the same number of columns with the same types as the target table, but the
names of the columns in the output query do not have to match.

INSERT INTO CourseIds (SELECT DISTINCT cid FROM enrolled);

8 Output Control
Since results SQL are unordered, we must use the ORDER BY clause to impose a sort on tuples:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade;

The default sort order is ascending (ASC). We can manually specify DESC to reverse the order:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade DESC;

We can use multiple ORDER BY clauses to break ties or do more complex sorting:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC;

We can also use any arbitrary expression in the ORDER BY clause:

SELECT sid FROM enrolled WHERE cid = '15-721'
ORDER BY UPPER(grade) DESC, sid + 1 ASC;

By default, the DBMS will return all of the tuples produced by the query. We can use the LIMIT clause to
restrict the number of result tuples:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10;

15-445/645 Database Systems
Page 4 of 7

https://15445.courses.cs.cmu.edu/fall2021/

Fall 2021 – Lecture #02 Intermediate SQL

We can also provide an offset to return a range in the results:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10 OFFSET 20;

Unless we use an ORDER BY clause with a LIMIT, the DBMS may produce different tuples in the result on
each invocation of the query because the relational model does not impose an ordering.

9 Nested Queries
Invoke queries inside of other queries to execute more complex logic within a single query. Nested queries
are often difficult to optimize.

The scope of outer query is included in an inner query (i.e. the inner query can access attributes from outer
query), but not the other way around.

Inner queries can appear in almost any part of a query:

1. SELECT Output Targets:

SELECT (SELECT 1) AS one FROM student;

2. FROM Clause:

SELECT name
FROM student AS s, (SELECT sid FROM enrolled) AS e
WHERE s.sid = e.sid;

3. WHERE Clause:

SELECT name FROM student
WHERE sid IN (SELECT sid FROM enrolled);

Example: Get the names of students that are enrolled in ‘15-445’.

SELECT name FROM student
WHERE sid IN (

SELECT sid FROM enrolled
WHERE cid = '15-445'

);

Note that sid has different scope depending on where it appears in the query.

Nested Query Results Expressions:

• ALL: Must satisfy expression for all rows in sub-query.
• ANY: Must satisfy expression for at least one row in sub-query.
• IN: Equivalent to =ANY().
• EXISTS: At least one row is returned.

10 Window Functions
Performs “sliding” calculation across a set of tuples that are related. Like an aggregation but tuples are not
grouped into a single output tuple.

15-445/645 Database Systems
Page 5 of 7

https://15445.courses.cs.cmu.edu/fall2021/

Fall 2021 – Lecture #02 Intermediate SQL

Functions: The window function can be any of the aggregation functions that we discussed above. There
are also also special window functions:

1. ROW NUMBER: The number of the current row.
2. RANK: The order position of the current row.

Grouping: The OVER clause specifies how to group together tuples when computing the window function.
Use PARTITION BY to specify group.

SELECT cid, sid, ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled ORDER BY cid;

We can also put an ORDER BY within OVER to ensure a deterministic ordering of results even if database
changes internally.

SELECT *, ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled ORDER BY cid;

IMPORTANT: The DBMS computes RANK after the window function sorting, whereas it computes ROW NUMBER
before the sorting.

11 Common Table Expressions
Common Table Expressions (CTEs) are an alternative to windows or nested queries when writing more
complex queries. They provide a way to write auxiliary statements for user in a larger query. CTEs can be
thought of as a temporary table that is scoped to a single query.

The WITH clause binds the output of the inner query to a temporary result with that name.

Example: Generate a CTE called cteName that contains a single tuple with a single attribute set to “1”.
Select all attributes from this CTE. cteName.

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName;

We can bind output columns to names before the AS:

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName;

A single query may contain multiple CTE declarations:

WITH cte1 (col1) AS (SELECT 1), cte2 (col2) AS (SELECT 2)
SELECT * FROM cte1, cte2;

Adding the RECURSIVE keyword after WITH allows a CTE to reference itself. This enables the implementa-
tion of recursion in SQL queries. With recursive CTEs, SQL is provably turing-complete, implying that it is
as computationally expressive as more general purpose programming languages (if a bit more cumbersome).

15-445/645 Database Systems
Page 6 of 7

https://15445.courses.cs.cmu.edu/fall2021/

Fall 2021 – Lecture #02 Intermediate SQL

Example: Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION
(SELECT counter + 1 FROM cteSource

WHERE counter < 10)
)
SELECT * FROM cteSource;

15-445/645 Database Systems
Page 7 of 7

https://15445.courses.cs.cmu.edu/fall2021/

	Relational Languages
	SQL History
	Joins
	Aggregates
	String Operations
	Date and Time
	Output Redirection
	Output Control
	Nested Queries
	Window Functions
	Common Table Expressions

