
Lecture #23: Distributed OLTP Databases
15-445/645 Database Systems (Fall 2021)

https://15445.courses.cs.cmu.edu/fall2021/
Carnegie Mellon University

Lin Ma

1 OLTP VS. OLAP
On-line Transaction Processing (OLTP)

• Short lived read/write transactions.
• Small footprint.
• Repetitive operations.

On-line Analytical Processing OLAP
• Long-running, read-only queries.
• Complex joins.
• Exploratory queries.

2 Distributed Transactions
A transaction is “distributed” if it accesses data on multiple nodes. Executing these transactions is more
challenging than single-node transactions because now when the transaction commits, the DBMS has to
make sure that all the nodes agree to commit the transaction. The DBMS ensure that the database provides
the same ACID guarantees as a single-node DBMS even in the case of node failures or message loss.

One can assume that all nodes in a distributed DBMS are well-behaved and under the same administrative
domain. In other words, given that there is not a node failure, a node which is told to commit a transaction
will commit the transaction. If the other nodes in a distributed DBMS cannot be trusted, then the DBMS
needs to use a byzantine fault tolerant protocol (e.g., blockchain) for transactions.

3 Atomic Commit Protocols
When a multi-node transaction finishes, the DBMS needs to ask all of the nodes involved whether it is safe
to commit. Depending on the protocol, a majority of the nodes or all of the nodes may be needed to commit.
Examples include:

• Two-Phase Commit (Common)
• Three-Phase Commit (Uncommon)
• Paxos (Common)
• Raft (Common)
• ZAB (Apache Zookeeper)
• Viewstamped Replication (first probably correct protocol)

Two-Phase Commit (2PC) blocks if coordinator fails after the prepare message is sent, until the coordinator
recovers. Paxos, on the other hand, is non-blocking if a majority participants are alive, provided there is a

https://15445.courses.cs.cmu.edu/fall2021/
https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #23 Distributed OLTP Databases

sufficiently long period without further failures. 2PC is used often if the nodes are in the same data center
because of the number of round trips could be less than for Paxos, assuming that nodes do not fail often and
are not malicious.

Two-Phase Commit
The client sends a Commit Request to the coordinator. In the first phase of this protocol, the coordinator
sends a Prepare message, essentially asking the participant nodes if the current transaction is allowed to
commit. If a given participant verifies that the given transaction is valid, they send an OK to the coordinator.
If the coordinator receives an OK from all the participants, the system can now go into the second phase in
the protocol. If anyone sends an Abort to the coordinator, the coordinator sends an Abort to the client.

The coordinator sends a Commit to all the participants, telling those nodes to commit the transaction, if all
the participants sent an OK. Once the participants respond with an OK, the coordinator can tell the client
that the transaction is committed. If the transaction was aborted in the first phase, the participants receive
an Abort from the coordinator, to which they should respond to with an OK. Either everyone commits or no
one does. The coordinator can also be a participant in the system.

Additionally, in the case of a crash, all nodes keep track of a non-volatile log of the outcome of each phase.
Nodes block until they can figure out the next course of action. If the coordinator crashes, the participants
must decide what to do. A safe option is just to abort. Alternatively, the nodes can communicate with each
other to see if they can commit without the explicit permission of the coordinator. If a participant crashes,
the coordinator assumes that it responded with an abort if it has not sent an acknowledgement yet.

Optimizations:

• Early Prepare Voting – If the DBMS sends a query to a remote node that it knows will be the last one
executed there, then that node will also return their vote for the prepare phase with the query result.

• Early Acknowledgement after Prepare – If all nodes vote to commit a transaction, the coordinator can
send the client an acknowledgement that their transaction was successful before the commit phase
finishes.

Paxos
Paxos (along with Raft) is more prevalent in modern systems than 2PC. It is a less strict version of 2PC.
This is a consensus protocol where a coordinator proposes an outcome (e.g., commit or abort) and then
the participants vote on whether that outcome should succeed. This protocol does not block if a majority
of participants are available and has probably minimal message delays in the best case. For Paxos, the
coordinator is called the proposer and participants are called acceptors.

The client will send a Commit Request to the proposer. The proposer will send a Propose to the other nodes
in the system, or the acceptors. A given acceptor will send an Agree if they have not already sent an Agree
on a higher logical timestamp. Otherwise, they send a Reject.

Once the majority of the acceptors sent an Agree, the proposer will send a Commit. The proposer must wait
to receive an Accept from the majority of acceptors before sending the final message to the client saying that
the transaction is committed, unlike 2PC.

Use exponential back off times for trying to propose again after a failed proposal, to avoid dueling proposers.

Multi-Paxos: If the system elects a single leader that oversees proposing changes for some period, then it
can skip the propose phase. The system periodically renews who the leader is using another Paxos round.
When there is a failure, the DBMS can fall back to full Paxos.

15-445/645 Database Systems
Page 2 of 4

https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #23 Distributed OLTP Databases

4 Replication
The DBMS can replicate data across redundant nodes to increase availability. In other words, if a node goes
down, the data is not lost, and the system is still alive and does not need to be rebooted. One can use Paxos
to determine which replica to write data to.

Number of Primary Nodes
In Primary-Replica, all updates go to a designated primary for each object. The primary propagates updates
to its replicas without an atomic commit protocol, coordinating all updates that come to it. Read-only
transactions may be allowed to access replicas if the most up-to-date information is not needed. If the
primary goes down, then hold an election to select a new primary.

In Multi-Primary, transactions can update data objects at any replica. Replicas must synchronize with each
other using an atomic commit protocol like Paxos or 2PC.

K-Safety
K-safety is a threshold for determining the fault tolerance of the replicated database. The value K represents
the number of replicas per data object that must always be available. If the number of replicas goes below
this threshold, then the DBMS halts execution and takes itself offline. A higher value of K reduces risk of
losing data. It is a threshold to determine how available a system can be.

Propagation Scheme
When a transaction commits on a replicated database, the DBMS decides whether it must wait for that
transaction’s changes to propagate to other nodes before it can send the acknowledgement to the application
client. There are two propagation levels: Synchronous (strong consistency) and asynchronous (eventual
consistency).

In a synchronous scheme, the primary sends updates to replicas and then waits for them to acknowledge
that they fully applied (i.e., logged) the changes. Then, the primary can notify the client that the update has
succeeded. It ensures that the DBMS will not lose any data due to strong consistency. This is more common
in a traditional DBMS.

In an asynchronous scheme, the primary immediately returns the acknowledgement to the client without
waiting for replicas to apply the changes. Stale reads can occur in this approach, since updates may not
be fully applied to replicas when read is occurring. If some data loss can be tolerated, this option can be a
viable optimization. This is used commonly in NoSQL systems.

Propagation Timing
For continuous propagation timing, the DBMS sends log messages immediately as it generates them. Note
that a commit or abort message needs to also be sent. Most systems use this approach.

For on commit propagation timing, the DBMS only sends the log messages for a transaction to the replicas
once the transaction is committed. This does not waste time for sending log records for aborted transactions.
It does make the assumption that a transaction’s log records fit entirely in memory.

Active vs Passive
There are multiple approaches to applying changes to replicas. For active-active, a transaction executes at
each replica independently. At the end, the DBMS needs to check whether the transaction ends up with the

15-445/645 Database Systems
Page 3 of 4

https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #23 Distributed OLTP Databases

same result at each replica to see if the replicas committed correctly. This is difficult since now the ordering
of the transactions must sync between all the nodes, making it less common.

For active-passive, each transaction executes at a single location and propagates the overall changes to the
replica. The DBMS can either send out the physical bytes that were changed, which is more common, or
the logical SQL queries.

5 CAP Theorem
The CAP Theorem, proposed by Eric Brewer and later proved in 2002 at MIT, explained that it is impossible
for a distributed system to always be Consistent, Available, and Partition Tolerant. Only two of these three
properties can be chosen.

Consistency is synonymous with linearizability for operations on all nodes. Once a write completes, all
future reads should return the value of that write applied or a later write applied. Additionally, once a read
has been returned, future reads should return that value or the value of a later applied write. NoSQL systems
compromise this property in favor of the latter two. Other systems will favor this property and one of the
latter two.

Availability is the concept that all up nodes can satisfy all requests.

Partition tolerance means that the system can still operate correctly despite some message loss between
nodes that are trying to reach consensus on values. If consistency and partition tolerance is chosen for a
system, updates will not be allowed until a majority of nodes are reconnected, typically done in traditional
or NewSQL DBMSs.

6 Federated Databases
These are distributed architectures that connect together multiple DBMSs into a single logical system. This
is more popular in bigger companies. A query can access data at any location. This is hard due to different
data models, query languages, and limitations of each individual DBMS. Additionally, there is no easy way
to optimize queries. Lastly, there is a lot of data copying that is involved.

For example, say there is an application server which makes some queries. These queries then go through a
middleware layer (which will convert the query into a readable format for a given DBMS used in the bigger
system) that via connectors, will go through the multiple back-end DBMSs that are deployed in the system.
The middleware will then handle the results returned from the DBMSs.

PostgreSQL is in the best position to successfully deploy a federated database using its foreign data wrap-
pers. It allows a user to use data from another system within a given Postgres session.

15-445/645 Database Systems
Page 4 of 4

https://15445.courses.cs.cmu.edu/fall2021/

	OLTP VS. OLAP
	Distributed Transactions
	Atomic Commit Protocols
	Replication
	CAP Theorem
	Federated Databases

