
05

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
http://cs.brown.edu/people/acrotty/
http://cs.brown.edu/people/acrotty/


15-445/645 (Fall 2021)

Project #1 is due Sunday, Sept 26th @11:59pm

Q&A Session about the project on Thursday, 
Sept 16th @4:00pm
→ Zoom link posted on Piazza

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Problem #1: How the DBMS represents the 
database in files on disk.

Problem #2: How the DBMS manages its memory 
and move data back-and-forth from disk.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as 

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write 

them to disk.
→ The goal is to minimize the number of stalls from having 

to read data from disk.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://gist.github.com/hellerbarde/2843375


15-445/645 (Fall 2021)

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://gist.github.com/hellerbarde/2843375


15-445/645 (Fall 2021)

6

1
HeaderDirectory

2
Header

3
Header

…4
Header

5
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

6

1
HeaderDirectory

2
Header

3
Header

…4
Header

5
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

6

1
HeaderDirectory

2
Header

3
Header

…4
Header

5
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

6

1
HeaderDirectory

2
Header

3
Header

…4
Header

5
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

6

1
HeaderDirectory

2
Header

3
Header

…4
Header

5
Header

Directory

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

6

1
HeaderDirectory

2
Header

3
Header

…

2
Header

4
Header

5
Header

Directory

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

6

1
HeaderDirectory

2
Header

3
Header

…

2
Header

4
Header

5
Header

Directory

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Buffer Pool Manager

Replacement Policies

Other Memory Pools

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Memory region organized as an array 
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an 
exact copy is placed into one of these 
frames.

8

frame1

frame2

frame3

frame4

page1 page2 page3 page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Memory region organized as an array 
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an 
exact copy is placed into one of these 
frames.

8

frame1

frame2

frame3

frame4

page1

page1 page2 page3 page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Memory region organized as an array 
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an 
exact copy is placed into one of these 
frames.

8

frame1

frame2

frame3

frame4

page1

page3

page1 page2 page3 page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter

9

page1 page2 page3 page4

frame1

frame2

frame3

frame4

page1

page3

page1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter

9

page1 page2 page3 page4

frame1

frame2

frame3

frame4

page1

page3

page1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter

9

page1 page2 page3 page4

frame1

frame2

frame3

frame4

page1

page3

page1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter

9

page1 page2 page3 page4

frame1

frame2

frame3

frame4

page1

page3

page1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter

9

page1 page2 page3 page4

frame1

frame2

frame3

frame4

page1

page3

page1

page3

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter

9

page1 page2 page3 page4

frame1

frame2

frame3

frame4

page1

page3

page1

page3

page2

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter

9

page1 page2 page3 page4

frame1

frame2

frame3

frame4

page1

page3

page1

page3

page2

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Locks:
→ Protects the database's logical contents from other 

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Locks:
→ Protects the database's logical contents from other 

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

10

←

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The page directory is the mapping from page ids 
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS 

to find on restart.

The page table is the mapping from page ids to a 
copy of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to 

be stored on disk.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Global Policies:
→ Make decisions for all active txns.

Local Policies:
→ Allocate frames to a specific txn without considering the 

behavior of concurrent txns.
→ Still need to support sharing pages.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS does not always have a single buffer 
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Helps reduce latch contention and improve 
locality.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

<ObjectId, PageId, SlotNum> 

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

<ObjectId, PageId, SlotNum> 

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

<ObjectId, PageId, SlotNum> 

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

HASH(123)%n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page0

page1

page2

page3

page4

page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page0

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page0

page1

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page0

page1

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page0

page1

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page1

page2

page0

page1

page2

page3

page4

page5

Q1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page1

page2

page0

page1

page2

page3

page4

page5

Q1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans

16

page0

page1

page2

page3

page4

page5Q1

page3

page4

page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

SELECT * FROM A
WHERE val BETWEEN 100 AND 250

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page1

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page1

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

17

index-page0

index-page1

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Queries can reuse data retrieved from storage or 
operator computations.
→ Also called synchronized scans.
→ This is different from result caching.

Allow multiple queries to attach to a single cursor 
that scans a table.
→ Queries do not have to be the same.
→ Can also share intermediate results.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

If a query wants to scan a table and another query 
is already doing this, then the DBMS will attach 
the second query's cursor to the existing cursor.

Examples:
→ Fully supported in IBM DB2, MSSQL, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

If a query wants to scan a table and another query 
is already doing this, then the DBMS will attach 
the second query's cursor to the existing cursor.

Examples:
→ Fully supported in IBM DB2, MSSQL, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://stackoverflow.com/questions/62185855/shared-scanning-in-postgres


15-445/645 (Fall 2021)

If a query wants to scan a table and another query 
is already doing this, then the DBMS will attach 
the second query's cursor to the existing cursor.

Examples:
→ Fully supported in IBM DB2, MSSQL, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://stackoverflow.com/questions/62185855/shared-scanning-in-postgres
https://www.postgresql.org/docs/current/runtime-config-compatible.html


15-445/645 (Fall 2021)

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1
Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1
Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1page3

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1page3 Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1

page3

Q2

page4

page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3

Q2

page4

page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

page1

page2

20

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q2

SELECT AVG(val) FROM A LIMIT 100Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The sequential scan operator will not store fetched 
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of 

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm


15-445/645 (Fall 2021)

Most disk operations go through the OS API.

Unless you tell it not to, the OS maintains its own 
filesystem cache (i.e., the page cache).

Most DBMSs use direct I/O (O_DIRECT) to bypass 
the OS’s page cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://linux.die.net/man/2/open


15-445/645 (Fall 2021)

When the DBMS needs to free up a frame to make 
room for a new page, it must decide which page to 
evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Maintain a single timestamp of when each page 
was last accessed.

When the DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce the search time 

on eviction.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=1

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=1

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=1

ref=1
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

LRU and CLOCK replacement policies are 
susceptible to sequential flooding.
→ A query performs a sequential scan that reads every page.
→ This pollutes the buffer pool with pages that are read 

once and then never again.

In some workloads the most recently used page is 
the most unneeded page.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2 Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

page1

page2

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page0

page1

page2

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page1

page2

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page1

page2

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

SELECT * FROM A WHERE id = 1Q3

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

page1

page2

27

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

SELECT * FROM A WHERE id = 1Q3

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Track the history of last K references to each page 
as timestamps and compute the interval between 
subsequent accesses.

The DBMS then uses this history to estimate the 
next time that page is going to be accessed.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS chooses which pages to evict on a per 
txn/query basis. This minimizes the pollution of 
the buffer pool from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres maintains a small ring buffer 
that is private to the query.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

FAST: If a page in the buffer pool is not dirty, then 
the DBMS can simply "drop" it.

SLOW: If a page is dirty, then the DBMS must 
write back to disk to ensure that its changes are 
persisted.

Trade-off between fast evictions versus dirty 
writing pages that will not be read again in the 
future.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can periodically walk through the page 
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can 
either evict the page or just unset the dirty flag.

Need to be careful that we don’t write dirty pages 
before their log records have been written…

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS needs memory for things other than 
just tuples and indexes.

These other memory pools may not always backed 
by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The DBMS can almost always manage memory 
better than the OS.

Leverage the semantics about the query plan to 
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Hash Tables

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

You will build the first component of 
your storage manager.
→ LRU Replacement Policy
→ Buffer Pool Manager Instance
→ Parallel Buffer Pool Manager

We will provide you with the disk 
manager and page layouts.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://github.com/cmu-db/bustub


15-445/645 (Fall 2021)

Build a data structure that tracks the usage of pages 
using the LRU policy.

General Hints:
→ Your LRUReplacer needs to check the "pinned" status of 

a Page.
→ If there are no pages touched since last sweep, then 

return the lowest page id.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Use your LRU replacer to manage the 
allocation of pages.
→ Need to maintain internal data structures 

to track allocated + free pages.
→ We will provide you components to 

read/write data from disk.
→ Use whatever data structure you want for 

the page table.

General Hints:
→ Make sure you get the order of operations 

correct when pinning.

38

Page6

Page2

Page4

Page0

Page1

Page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

39

HASH(123)%n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

GET RECORD 123Q1Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

39

HASH(123)%n

page_id mod num_instances

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Do not change any file other than the six that you 
must hand in. Other changes will not be graded.

The projects are cumulative.

We will not be providing solutions.

Post any questions on Piazza or come to office 
hours, but we will not help you debug.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

We will automatically check whether you are 
writing good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit 
your implementation to Gradescope.
→ make format
→ make check-lint
→ make check-censored
→ make check-clang-tidy

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html


15-445/645 (Fall 2021)

Gradescope Leaderboard runs your code with a 
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class 
will receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

Student with the most bonus points at the end of 
the semester will receive a BusTub shirt!

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Your project implementation must be 
your own work.
→ You may not copy source code from other 

groups or the web.
→ Do not publish your implementation on 

GitHub.

Plagiarism will not be tolerated.
See CMU's Policy on Academic 
Integrity for additional information. 

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm

