
05

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
http://cs.brown.edu/people/acrotty/
http://cs.brown.edu/people/acrotty/


15-445/645 (Fall 2021)

Project #1 is due Sunday, Sept 26th @11:59pm

Q&A Session about the project on Thursday, 
Sept 16th @4:00pm
→ Zoom link posted on Piazza
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Problem #1: How the DBMS represents the 
database in files on disk.

Problem #2: How the DBMS manages its memory 
and move data back-and-forth from disk.
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Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as 

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write 

them to disk.
→ The goal is to minimize the number of stalls from having 

to read data from disk.
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Buffer Pool Manager

Replacement Policies

Other Memory Pools
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Memory region organized as an array 
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an 
exact copy is placed into one of these 
frames.
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The page table keeps track of pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter
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Locks:
→ Protects the database's logical contents from other 

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.
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The page directory is the mapping from page ids 
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS 

to find on restart.

The page table is the mapping from page ids to a 
copy of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to 

be stored on disk.
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Global Policies:
→ Make decisions for all active txns.

Local Policies:
→ Allocate frames to a specific txn without considering the 

behavior of concurrent txns.
→ Still need to support sharing pages.
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Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass
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The DBMS does not always have a single buffer 
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Helps reduce latch contention and improve 
locality.
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Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
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The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans
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Queries can reuse data retrieved from storage or 
operator computations.
→ Also called synchronized scans.
→ This is different from result caching.

Allow multiple queries to attach to a single cursor 
that scans a table.
→ Queries do not have to be the same.
→ Can also share intermediate results.
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If a query wants to scan a table and another query 
is already doing this, then the DBMS will attach 
the second query's cursor to the existing cursor.

Examples:
→ Fully supported in IBM DB2, MSSQL, and Postgres.
→ Oracle only supports cursor sharing for identical queries.
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The sequential scan operator will not store fetched 
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of 

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.
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Most disk operations go through the OS API.

Unless you tell it not to, the OS maintains its own 
filesystem cache (i.e., the page cache).

Most DBMSs use direct I/O (O_DIRECT) to bypass 
the OS’s page cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

22
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When the DBMS needs to free up a frame to make 
room for a new page, it must decide which page to 
evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead
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Maintain a single timestamp of when each page 
was last accessed.

When the DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce the search time 

on eviction.
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Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=1

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=1

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=1

ref=1
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if a page's bit is set 

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

LRU and CLOCK replacement policies are 
susceptible to sequential flooding.
→ A query performs a sequential scan that reads every page.
→ This pollutes the buffer pool with pages that are read 

once and then never again.

In some workloads the most recently used page is 
the most unneeded page.
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Track the history of last K references to each page 
as timestamps and compute the interval between 
subsequent accesses.

The DBMS then uses this history to estimate the 
next time that page is going to be accessed.
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The DBMS chooses which pages to evict on a per 
txn/query basis. This minimizes the pollution of 
the buffer pool from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres maintains a small ring buffer 
that is private to the query.
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The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether 
a page is important or not.
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FAST: If a page in the buffer pool is not dirty, then 
the DBMS can simply "drop" it.

SLOW: If a page is dirty, then the DBMS must 
write back to disk to ensure that its changes are 
persisted.

Trade-off between fast evictions versus dirty 
writing pages that will not be read again in the 
future.
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The DBMS can periodically walk through the page 
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can 
either evict the page or just unset the dirty flag.

Need to be careful that we don’t write dirty pages 
before their log records have been written…
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The DBMS needs memory for things other than 
just tuples and indexes.

These other memory pools may not always backed 
by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches
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The DBMS can almost always manage memory 
better than the OS.

Leverage the semantics about the query plan to 
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching
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Hash Tables
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You will build the first component of 
your storage manager.
→ LRU Replacement Policy
→ Buffer Pool Manager Instance
→ Parallel Buffer Pool Manager

We will provide you with the disk 
manager and page layouts.
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Build a data structure that tracks the usage of pages 
using the LRU policy.

General Hints:
→ Your LRUReplacer needs to check the "pinned" status of 

a Page.
→ If there are no pages touched since last sweep, then 

return the lowest page id.
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Use your LRU replacer to manage the 
allocation of pages.
→ Need to maintain internal data structures 

to track allocated + free pages.
→ We will provide you components to 

read/write data from disk.
→ Use whatever data structure you want for 

the page table.

General Hints:
→ Make sure you get the order of operations 

correct when pinning.
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Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
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Do not change any file other than the six that you 
must hand in. Other changes will not be graded.

The projects are cumulative.

We will not be providing solutions.

Post any questions on Piazza or come to office 
hours, but we will not help you debug.
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We will automatically check whether you are 
writing good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit 
your implementation to Gradescope.
→ make format
→ make check-lint
→ make check-censored
→ make check-clang-tidy
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Gradescope Leaderboard runs your code with a 
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class 
will receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

Student with the most bonus points at the end of 
the semester will receive a BusTub shirt!
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Your project implementation must be 
your own work.
→ You may not copy source code from other 

groups or the web.
→ Do not publish your implementation on 

GitHub.

Plagiarism will not be tolerated.
See CMU's Policy on Academic 
Integrity for additional information. 
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