
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
http://cs.brown.edu/people/acrotty/
http://cs.brown.edu/people/acrotty/

15-445/645 (Fall 2021)

Project #1 is due Sunday, Sept 26th @11:59pm

Homework #2 is due Sunday, Oct 3rd @11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A table index is a replica of a subset of a table's
attributes that are organized and/or sorted for
efficient access using those attributes.

The DBMS ensures that the contents of the table
and the index are logically synchronized.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

It is the DBMS's job to figure out the best
index(es) to use to execute each query.

There is a trade-off regarding the number of
indexes to create per database.
→ Storage Overhead
→ Maintenance Overhead

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

B+Tree Overview

Use in a DBMS

Design Choices

Optimizations

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://dl.acm.org/citation.cfm?id=319663

15-445/645 (Fall 2021)

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A B+Tree is a self-balancing tree data
structure that keeps data sorted and
allows searches, sequential access,
insertions, and deletions in O(log n).
→ Generalization of a binary search tree,

since a node can have more than two
children.

→ Optimized for systems that read and write
large blocks of data.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://dl.acm.org/citation.cfm?doid=356770.356776

15-445/645 (Fall 2021)

A B+Tree is an M-way search tree with the
following properties:
→ It is perfectly balanced (i.e., every leaf node is at the same

depth in the tree)
→ Every node other than the root is at least half-full

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

6 7 9 131 3

5 9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

Leaf Nodes

6 7 9 131 3

5 9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

Leaf Nodes

Inner Node

6 7 9 131 3

5 9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

Leaf Nodes

Inner Node

Sibling Pointers

6 7 9 131 3

5 9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

Leaf Nodes

Inner Node

Sibling Pointers

6 7 9 131 3

5 9<node*>|<key>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

Leaf Nodes

<5 <9 ≥9

Inner Node

Sibling Pointers

6 7 9 131 3

5 9<node*>|<key>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

Leaf Nodes

<5 <9 ≥9

Inner Node

<value>|<key>

Sibling Pointers

6 7 9 131 3

5 9<node*>|<key>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Every B+Tree node is comprised of an array of
key/value pairs.
→ The keys are derived from the attribute(s) that the index

is based on.
→ The values will differ based on whether the node is

classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

B+Tree Leaf Node

12

K1 V1 • • • Kn Vn¤ ¤
Prev Next

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

B+Tree Leaf Node

12

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

B+Tree Leaf Node

12

Key+ Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

B+Tree Leaf Node

12

Key+ Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

B+Tree Leaf Node

12

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values

¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

B+Tree Leaf Node

12

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values

¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Record IDs
→ A pointer to the location of the tuple to

which the index entry corresponds.

Approach #2: Tuple Data
→ The leaf nodes store the actual contents of

the tuple.
→ Secondary indexes must store the Record

ID as their values.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Record IDs
→ A pointer to the location of the tuple to

which the index entry corresponds.

Approach #2: Tuple Data
→ The leaf nodes store the actual contents of

the tuple.
→ Secondary indexes must store the Record

ID as their values.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The original B-Tree from 1972 stored keys and
values in all nodes in the tree.
→ More space-efficient, since each key only appears once in

the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.

Example: Index on <a,b,c>
→ Supported: (a=5 AND b=3)
→ Supported: (b=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

A ≤ A
B ≤ C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

A ≤ A
B ≤ C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*) A ≤ A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*) A ≤ A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

16

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*) A ≤ A

(A,*) ≤ (B,*)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Find correct leaf node L.
Put data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2021)

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2021)

Approach #1: Append Record ID
→ Add the tuple's unique Record ID as part of the key to

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain

the duplicate keys.
→ This is more complex to maintain and modify.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5 <9 ≥9

6 7 8 9 131 3

5 9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5 <9 ≥9

6 7 8 9 131 3

5 9
Insert 6

<Key,RecordId>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5 <9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

7 9

<7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

<5

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

21

<5 <7 ≥9

6 7 8 9 131 3

5 9
Insert 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

21

<5 <7 ≥9

6 7 8 9 131 3

5 9
Insert 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

21

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

21

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

21

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The table is stored in the sort order specified by
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will

automatically make a hidden primary key.

Other DBMSs cannot use them at all.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
external sorting.

23

Data Records

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
external sorting.

23

Data Records

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
external sorting.

23

Data Records

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

24

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

24

101 102 103 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

24

101 102 103 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

24

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

24

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

24

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Node Size

Merge Threshold

Variable-Length Keys

Intra-Node Search

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://dl.acm.org/citation.cfm?id=2185842

15-445/645 (Fall 2021)

The slower the storage device, the larger the
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Some DBMSs do not always merge nodes when
they are half full.

Delaying a merge operation may reduce the
amount of reorganization.

It may also be better to just let smaller nodes exist
and then periodically rebuild entire tree.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable-Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value

list within the node.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

29

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Prefix Compression

Deduplication

Bulk Insert

Many more…

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

31

robbed robbing robot

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

31

robbed robbing robot

bed bing ot

Prefix: rob

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed
for hash tables).

32

K1 V1 K1 V2 K1 V3 K2 V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed
for hash tables).

32

K1 V1 K1 V2 K1 V3 K2 V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed
for hash tables).

32

K1 V1 K1 V2 K1 V3 K2 V4

K1 V1 V2 V3 K2 V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

33

6 7 9 131 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

33

6 9

6 7 9 131 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The venerable B+Tree is (almost) always a good
choice for your DBMS.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Index Concurrency Control

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

