Intro to Database
15-445/15_-64,54»- :

gy @& Fall2021

Andrew Crotty
Computer Science
Carnegie Mellon University

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
http://cs.brown.edu/people/acrotty/
http://cs.brown.edu/people/acrotty/

ADMINISTRIVIA

Project #1 is due Sunday, Sept 26" @11:59pm

Homework #2 is due Sunday, Oct 3™ @11:59pm

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DATA STRUCTURES

Internal Meta-data
Core Data Storage

Temporary Data Structures
Table Indexes

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DATA STRUCTURES

Internal Meta-data
Core Data Storage

Temporary Data Structures
Table Indexes

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TABLE INDEXES

A table index is a replica of a subset of a table's
attributes that are organized and/or sorted for
efficient access using those attributes.

The DBMS ensures that the contents of the table
and the index are logically synchronized.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TABLE INDEXES

[t is the DBMS's job to figure out the best
index(es) to use to execute each query.

There is a trade-off regarding the number of

indexes to create per database.
— Storage Overhead
— Maintenance Overhead

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TODAY'S AGENDA

B+Tree Overview
Use in a DBMS
Design Choices

Optimizations

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)

— B+Tree (1973)

— B*Tree (1977?)

— Blink_Tree (1981)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_Tree (1981)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

Efficient Locking for Concurrent Operations
on B-Trees

B-TREE FAMI
PHILIP L. LEHMAN
Carnegie-Melion University
and

S. BING YAO
PurdueUnlversny

There is a specific data structure ¢

concurrency controls, locking Protocols, correctness, consistency, multiway search trees
CR Categories: 373, 3.74, 432,433, 4.34, 5,24

People also use the term to gener
class of balanced tree data structu

— B-Tree (1971)

— B+Tree (1973)
— B*Tree (1977?)
— Blink_T'ree (1981)

1. INTRODUCTION

ly and . In
paper, we consider g simple variant of the B-tree (actually of the B*-tree,
Proposed by Wedekingd [15)) especially well suited for use in a concurrent database
system.

Methods for concurrent operations on B*-trees have been discussed by Bayer
and Schkolnick [3] and others [6, 12, 13). The solution given in the current paper

Pemi-donwmpywiﬂ!mlfulﬂorplnoﬂhhmwhmledpmided'b‘lﬂ'lecopiulrello(
made or distributed for direct commercial advantage, the ACM COPYTight notice and the title of the
whuau'on-ndiud.u.pp.n,-ndmueahmux.eeom,nbyp.m-snnolmmuon
for Compuling Machinery. To copy otherwise, or to Tepublish, requires g fee and/or specific
Permission,

This research was Supported by the National Science Foundation under Grant MCS76-16604,
Authors’ present addresses: P, L e t of Computer Science, Carnegie-Mellon
University, Pittsburgh, pA 16213; 8. B. Yao, Department of&mmm&nmmcoumufawnu
and Management, University of Maryland, College Park, MD 20742

©1981 ACM oesz-sexs/n/lzmosso $00.75

ACM Transactions on Database Systems, Vol. 6, No, 4, December 1981, Pages 650-670,

£2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://dl.acm.org/citation.cfm?id=319663

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_Tree (1981)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE

A B+Tree is a self-balancing tree data
structure that keeps data sorted and

allows searches, sequential access,

insertions, and deletions in O(log n).

— Generalization of a binary search tree,
since a node can have more than two
children.

— Optimized for systems that read and write
large blocks of data.

$CMU-DB

15-445/645 (Fall 2021)

The Ubiquitous B-Tree

DOUGLAS COMER

Computer Science Department, Purdue Uniersily, West Lafayette, Indiana 47907

B-trees have become, de facto, n standard for file organization. File indexes of users,
dedicated database systems, and general-purpose access methods have all been propased
and implemented using B-trees This paper reviews B-trees and shows why they have
been 80 successful It discusses the major variations of the B-tres, especally the B'-tree

of

ng the relatwve

It llustrates » general

purpose access method which uses a B-tree.
Keywords and Phrases: B-tree, B*-tree, B'-tree, file organization, index

CR Categories: .73 374 4.33 434

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
vetrieval commands which can be illus-
trated by the following examples:
Sequential: “From our employee file, pre-

pare a list of all nmplnyﬂu
names and ad nd
Random: “From our emp]uyoe i‘de ex-
tract the information about
employee J. Smith"
We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled “A-
G,” “H-R,” and “S-Z,” while the folders

might be labeled with the employees' last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and 50 on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

Permission to copy without fee all or part of this material is granted provided that the copwes are not made or

distributed for direct commercial advantage, the ACM copyright natice and the e of e publication and its

date appear, and rotice 1 ghven that opying s by permiseion of the Asociation for Computing Machinery. To
herwise, or to republish, requires a fee and/or specific permission.

copy ot
© 1978 ACM 0010-4852/79,0600-0121 300 75

Computing Surveys, Vol 11, No 3, June 1979

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://dl.acm.org/citation.cfm?doid=356770.356776

B+TREE PROPERTIES

A B+Tree is an M-way search tree with the

following properties:

— [t is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)

— Every node other than the root is at least half-full
M/2-1 < #keys < M-1

— Every inner node with k keys has k+1 non-null children

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE EXAMPLE

— =

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE EXAMPLE

519
1|3 6 || 7 91113

Leaf Nodes

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE EXAMPLE

Inner Node
5|9
1|3 6|7 9 (|13
Leaf Nodes

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE EXAMPLE

Inner Node

5
/%
6 || 7 9113

N
Sibling Pointers R0 G

\

—_
w

(

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE EXAMPLE

<node*>|<key>

Inner Node

5

=

—_
w

Z

7

9

13

$CMU-DB

15-445/645 (Fall 2021)

(

"/

Sibling Pointers

Leaf Nodes

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE EXAMPLE

<node*>|<key>

.............. Inner Node
S|l E
,}5/ <y %
X X
1|3 6|7 9 [[13
';i-b/ling Pointe;:-/ R0 G

$CMU-DB

15-445/645 (Fall 2021)

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE EXAMPLE

<node*>|<key>

Inner Node

5

9

(o)

6

7

AN

9

13

PR
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
o

<value>|<key>

$2CMU-DB

15-445/645 (Fall 2021)

"/

Sibling Pointers

Leaf Nodes

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NODES

Every B+Tree node is comprised of an array of

key/value pairs.

— The keys are derived from the attribute(s) that the index
is based on.

— The values will differ based on whether the node is
classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE LEAF NODES

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
: g < o | k7| VI|eeo gn|Vvn| o =>
—T —T

.
-
.
.
.
.
.
.
.
.
.
.
.
‘e
o

$CMU-DB

15-445/645 (Fall 2021)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

12

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
* : PagelD 4—@ K1 | V1 |eee Kn | Vn E—bPageID
—— P —

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

12

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
* : PageID4—| g | k7| V1 |eee kn| Vn | & I—bPageID
—T — v
Key+Value

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

12

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
* : PagelD 4—| o | K7 | o |eee kn | u o I—bPageID
—T — v
Key+Value

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev Next
[# # o o
g 3
Sorted Keys
y y Y y Kl | K2 | K3 | K4 | K5 |0
Values
o o o o o |eee

$2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev Next
| # # n o
:)
Sorted Keys
y ¥ y ¥ Kl | K2 | K3 | K4 | K5 |*** Kn
sy 4 4 i
o o o o 0o |eee

$2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE VALUES

Approach #1: Record IDs

— A pointer to the location of the tuple to
which the index entry corresponds.

Approach #2: Tuple Data

— The leaf nodes store the actual contents of
the tuple.

— Secondary indexes must store the Record
ID as their values.

$CMU-DB

15-445/645 (Fall 2021)

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE VALUES

Microsoft®

Approach #1: Record IDs

— A pointer to the location of the tuple to

which the index entry corresponds. ORACLE
Approach #2: Tuple Data ? o s @
— The leaf nodes store the actual contents of SQLite < SQLServer

the tuple.

— Secondary indexes must store the Record RML-ISQLW ORACLE

ID as their values.

$CMU-DB

15-445/645 (Fall 2021)

@) PostgreSQL \lﬁ SQL Server

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys and

values in all nodes in the tree.
— More space-efficient, since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15

SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.
Example: Index on <a, b, c>

— Supported: (a=5 AND b=3)
— Supported: (b=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

B,B|[C,C

A,C
el B
-l
AAl[A,B A,C| (B,A

B,B| |B,C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)

B,B|[C,C

A,C
el B
-l
AAl[A,B A,C| (B,A

B,B| |B,C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)

A <A
B=<C
A,C||B,B||C,C
A,Al (A,B A,C|[B,A B,B| (B,C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)

A <A
B=<C
A,C||B,B||C,C
A,Al (A,B A,C|[B,A B,B| (B,C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)

B,B|[C,C

A,C
el B
-l
AAl[A,B A,C| (B,A

B,B| |B,C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

A,A

A,B

C,C

C,D

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

A,A

A,B

C,C

C,D

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

A,A

A,B

C,C

C,D

*

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

A,A

A,B

C,C

C,D

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — INSERT

Find correct leaf node L.
Put data entry into L in sorted order.

[f L has enough space, done!

Otherwise, split L keys into L and a new node L2
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

Source: Chris Re

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREE — DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only M/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L

soce cnisre OT sibling) from parent of L.
£=CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREE — DUPLICATE KEYS

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

5119
}/@ %
.\ O\
1 3 6||7]|]| 8 9 1113
Y Y

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

5119
’/<5/<9 %
X X
““““ 1143 6([7]s 9 [[13
“““““““ _J R

<Key, RecordId>

0CMU -DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

Insert 6
5 (] 9
’/<5/<9 %
N\ N\
““““ 1113 6(l7]|8 9 (|13
““““““““ R R

<Key, RecordId>

0CMU -DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

(8]
((o]

’/<5/<9 %
X X

““““ 1143 6([7]s 9 [[13
“““““““ _J R

<Key, RecordId>

0CMU -DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

5 (|9
<5 <?/ >9
X
1L 3 6 7 8 9113

<Key, RecordId>

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

(8]
((o]

<5

g

Y
w
(o))
~
©0

(

.*
.
.
.
.
.
.
.
.
.
.
Y
.
.
.
.
.
.
.
.
.
.*
o*

<Key, RecordId>

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

(8]
~
(Co]

<5

A

Y
w
(o))
~
©0

(

.*
.
.
.
.
.
.
.
.
.
.
Y
.
.
.
.
.
.
.
.
.
.*
o*

<Key, RecordId>

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

5 7 9
<5 <}j \sg::\‘zg
N\ N\
1 3 6 6 7 8

. 3
L
PR e °,
. o}
*
.
.* .
.** °.
o* .
R .
R .
.* A
“
.
o

<Key, RecordId>

0CMU -DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — OVERFLOW LEAF NODES

Insert 6
519
an an
1|3 6(|7]]8 9 [[13
' "4

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — OVERFLOW LEAF NODES

\

Insert 6

(8]
((o]

A

Y
w
(o))
~

13

(

0CMU -DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — OVERFLOW LEAF NODES

Insert 6
5 9
<5 <7/ >9
N\ Y’
1 3 6 7 8 91113

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — OVERFLOW LEAF NODES

Insert 6
5(]9
Insert 7 <5 <7/ >q
X '
1{]3 6(l7]|8 9 (|13
R

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — OVERFLOW LEAF NODES

Insert 6
5] 9
Insert 7 <5 <7 >q
Insert 6 7N\ / 7N\
1(]3 6(7]||8 9 (|13

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
— If a table does not contain a primary key, the DBMS will
automatically make a hidden primary key.

Other DBMSs cannot use them at all.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

23

CLUSTERED B+TREE

Index
(Directs search)

Traverse to the left-most leaf page Data Entries

("Sequence set")

and then retrieve tuples from all leaf
pages.

This will always be better than
external sorting. Data Records

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

23

CLUSTERED B+TREE

Index

(Directs search) .
Traverse to the left-most leaf page gggfe';f;‘;‘fet,,)
and then retrieve tuples from all leaf
pages. e //

This will always be better than
external sorting. Data Records

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than
external sorting.

$CMU-DB

15-445/645 (Fall 2021)

Data Records

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

$CMU-DB

15-445/645 (Fall 2021)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

$CMU-DB

15-445/645 (Fall 2021)

"\
Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INDEX SCAN PAGE SORTING

Scan Direction

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

$CMU-DB

15-445/645 (Fall 2021)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

INDEX SCAN PAGE SORTING

Scan Direction

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the Page 102
tuples that it needs and then sort them P 104
. Page 102

based on their Page ID. Page 103
Page 102

Page 102

Page 101

Page 103

Page 104

Page 103

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INDEX SCAN PAGE SORTING

Scan Direction

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the

tuples that it needs and then sort them
based on their Page ID.

—_ e e e e
SO
WHRW_LPNNWNDEDRNWN

$CMU-DB

15-445/645 (Fall 2021)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INDEX SCAN PAGE SORTING

Scan Direction

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the 102
tuples that it needs and then sort them 04
. 102

based on their Page ID. 103
102

101

103

104

103

$CMU-DB

15-445/645 (Fall 2021)

—_—— e e D D L

SOOI
AR DRMNWWWNNNN—=—

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://dl.acm.org/citation.cfm?id=2185842

NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

MERGE THRESHOLD

Some DBMSs do not always merge nodes when

they are half full.

Delaying a merge operation may reduce the
amount of reorganization.

[t may also be better to just let smaller nodes exist
and then periodically rebuild entire tree.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VARIABLE-LENGTH KEYS

Approach #1: Pointers
— Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable-Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value

list within the node.
£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8

6

7

8

10

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8

4

6

7

8

10

*

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH
Find Key=8

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

6

7

8

10

*

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8
6(/7]]8 10
6(7]]8 10

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8
6(/7]]8 10
6(7]]8 10

*

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8
6(|7]|[8]|9]|e
6(|7][8]|9]|0

*

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8
6(/7]]8 10
6(l7]]8 10

*

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8
6(/7]]8 10
6(l7]]8 10
6(l7]]8 10

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8
a|[5||e||l7]| 8] 9]l
alls5||e||l7] 8] 9]l

*

Offset: (8-4)*7/(10-4)=4

4

5

6

7

8

9

10

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$CMU-DB

15-445/645 (Fall 2021)

Find Key=8
a|[5||e||l7]| 8] 9]l
4|[5]|6]7 9 (|10

_E

Offset: (8-4)*7/(10-4)=4

4

5

6

7

9

10

_E

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OPTIMIZATIONS

Prefix Compression
Deduplication

Bulk Insert

Many more...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store

only unique suffix for each key.
— Many variations.

$CMU-DB

15-445/645 (Fall 2021)

robbed

robbing

robot

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store

only unique suffix for each key.
— Many variations.

$CMU-DB

15-445/645 (Fall 2021)

31

robbed ||robbing|| robot
Prefix: rob
bed [[bing|| ot

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed

for hash tables).

$CMU-DB

15-445/645 (Fall 2021)

32

K1

V1

K1

V2

K1

V3

K2

V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed

for hash tables).

$CMU-DB

15-445/645 (Fall 2021)

32

K1

V1

K1

V2

K1

V3

K2

V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed

for hash tables).

$CMU-DB

15-445/645 (Fall 2021)

32

K1]Vl]| K1]|V2]K1]|V3|K2]| V4
K1 |V1|V2]V3|K2]| V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

$CMU-DB

15-445/645 (Fall 2021)

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

$CMU-DB

15-445/645 (Fall 2021)

Keys: 3,7,9,13, 6, 1

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

$CMU-DB

15-445/645 (Fall 2021)

Keys: 3,7,9,13,6,1
Sorted Keys: 1, 3,6, 7,9, 13

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

Keys: 3,7,9,13, 6, 1

Sorted Keys: 1, 3,6, 7,9, 13

91113

'
Y
$2CMU-DB

15-445/645 (Fall 2021)

X
"/

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first Keys: 3,7,9,13,6, 1
sort the keys and then build the index Sorted Keys: 1, 3, 6, 7, 9, 13

from the bottom up.
6
/ %
6

"/

\

—_
w

(

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NEXT CLASS

Index Concurrency Control

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

