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Project #1 is due Sunday, Sept 26th @11:59pm

Homework #2 is due Sunday, Oct 3rd @11:59pm
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Temporary Data Structures
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A table index is a replica of a subset of a table's 
attributes that are organized and/or sorted for 
efficient access using those attributes.

The DBMS ensures that the contents of the table 
and the index are logically synchronized.
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It is the DBMS's job to figure out the best 
index(es) to use to execute each query.

There is a trade-off regarding the number of 
indexes to create per database.
→ Storage Overhead
→ Maintenance Overhead
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B+Tree Overview

Use in a DBMS

Design Choices

Optimizations
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There is a specific data structure called a B-Tree.

People also use the term to generally refer to a 
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
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A B+Tree is a self-balancing tree data 
structure that keeps data sorted and 
allows searches, sequential access, 
insertions, and deletions in O(log n).  
→ Generalization of a binary search tree, 

since a node can have more than two 
children. 

→ Optimized for systems that read and write 
large blocks of data.
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A B+Tree is an M-way search tree with the 
following properties: 
→ It is perfectly balanced (i.e., every leaf node is at the same 

depth in the tree)
→ Every node other than the root is at least half-full 

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children
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Every B+Tree node is comprised of an array of 
key/value pairs.
→ The keys are derived from the attribute(s) that the index 

is based on. 
→ The values will differ based on whether the node is 

classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.
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B+Tree Leaf Node
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Approach #1: Record IDs
→ A pointer to the location of the tuple to 

which the index entry corresponds.

Approach #2: Tuple Data
→ The leaf nodes store the actual contents of 

the tuple.
→ Secondary indexes must store the Record 

ID as their values.
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The original B-Tree from 1972 stored keys and 
values in all nodes in the tree.
→ More space-efficient, since each key only appears once in 

the tree.

A B+Tree only stores values in leaf nodes. Inner 
nodes only guide the search process.
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The DBMS can use a B+Tree index if the query 
provides any of the attributes of the search key.

Example: Index on <a,b,c>
→ Supported: (a=5 AND b=3)
→ Supported: (b=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in 
search key.
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Find correct leaf node L.
Put data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, 
but push up middle key. 
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Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done! 
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent 

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.
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Approach #1: Append Record ID
→ Add the tuple's unique Record ID as part of the key to 

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain 

the duplicate keys.
→ This is more complex to maintain and modify.
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The table is stored in the sort order specified by 
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will 

automatically make a hidden primary key.

Other DBMSs cannot use them at all.
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Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.

This will always be better than 
external sorting.

23

Data Records

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.

This will always be better than 
external sorting.

23

Data Records

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.
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Retrieving tuples in the order they 
appear in a non-clustered index can be 
very inefficient.

The DBMS can first figure out all the 
tuples that it needs and then sort them 
based on their Page ID.

24
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Node Size

Merge Threshold

Variable-Length Keys

Intra-Node Search
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The slower the storage device, the larger the 
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB 
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals
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Some DBMSs do not always merge nodes when 
they are half full.

Delaying a merge operation may reduce the 
amount of reorganization.

It may also be better to just let smaller nodes exist 
and then periodically rebuild entire tree.
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Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable-Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value 

list within the node.
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Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right 

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based 

on known distribution of keys.

29
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Prefix Compression

Deduplication

Bulk Insert

Many more…

30
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Sorted keys in the same leaf node are 
likely to have the same prefix.

Instead of storing the entire key each 
time, extract common prefix and store 
only unique suffix for each key.
→ Many variations.

31
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Non-unique indexes can end up 
storing multiple copies of the same 
key in leaf nodes.

The leaf node can store the key once 
and then maintain a list of tuples with 
that key (similar to what we discussed 
for hash tables).

32
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The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.
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The venerable B+Tree is (almost) always a good 
choice for your DBMS.
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Index Concurrency Control
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