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TABLE INDEXES

A table index is a replica of a subset of a table's
attributes that are organized and/or sorted for
efficient access using those attributes.

The DBMS ensures that the contents of the table
and the index are logically synchronized.
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TABLE INDEXES

[t is the DBMS's job to figure out the best
index(es) to use to execute each query.

There is a trade-off regarding the number of

indexes to create per database.
— Storage Overhead
— Maintenance Overhead
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TODAY'S AGENDA

B+Tree Overview
Use in a DBMS
Design Choices

Optimizations
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B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)

— B+Tree (1973)

— B*Tree (1977?)

— Blink_Tree (1981)
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Efficient Locking for Concurrent Operations
on B-Trees

B-TREE FAMI
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Carnegie-Melion University
and
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PurdueUnlversny

There is a specific data structure ¢

concurrency controls, locking Protocols, correctness, consistency, multiway search trees
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1. INTRODUCTION

ly and . In
paper, we consider g simple variant of the B-tree (actually of the B*-tree,
Proposed by Wedekingd [15)) especially well suited for use in a concurrent database
system.

Methods for concurrent operations on B*-trees have been discussed by Bayer
and Schkolnick [3] and others [6, 12, 13). The solution given in the current paper
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B+TREE

A B+Tree is a self-balancing tree data
structure that keeps data sorted and

allows searches, sequential access,

insertions, and deletions in O(log n).

— Generalization of a binary search tree,
since a node can have more than two
children.

— Optimized for systems that read and write
large blocks of data.
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The Ubiquitous B-Tree

DOUGLAS COMER

Computer Science Department, Purdue Uniersily, West Lafayette, Indiana 47907

B-trees have become, de facto, n standard for file organization. File indexes of users,
dedicated database systems, and general-purpose access methods have all been propased
and implemented using B-trees This paper reviews B-trees and shows why they have
been 80 successful It discusses the major variations of the B-tres, especally the B'-tree

of

ng the relatwve

It llustrates » general

purpose access method which uses a B-tree.
Keywords and Phrases: B-tree, B*-tree, B'-tree, file organization, index
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INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
vetrieval commands which can be illus-
trated by the following examples:
Sequential:  “From our employee file, pre-

pare a list of all nmplnyﬂu
names and ad nd
Random: “From our emp]uyoe i‘de ex-
tract the information about
employee J. Smith"
We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled “A-
G,” “H-R,” and “S-Z,” while the folders

might be labeled with the employees' last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and 50 on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-
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B+TREE PROPERTIES

A B+Tree is an M-way search tree with the

following properties:

— [t is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)

— Every node other than the root is at least half-full
M/2-1 < #keys < M-1

— Every inner node with k keys has k+1 non-null children
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B+TREE EXAMPLE

Inner Node
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B+TREE EXAMPLE
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NODES

Every B+Tree node is comprised of an array of

key/value pairs.

— The keys are derived from the attribute(s) that the index
is based on.

— The values will differ based on whether the node is
classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.
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B+TREE LEAF NODES
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B+TREE LEAF NODES
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B+TREE LEAF NODES

B+Tree Leaf Node
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B+TREE LEAF NODES

B+Tree Leaf Node
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B+TREE LEAF NODES

B+Tree Leaf Node
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B+TREE LEAF NODES
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LEAF NODE VALUES

Approach #1: Record IDs

— A pointer to the location of the tuple to
which the index entry corresponds.

Approach #2: Tuple Data

— The leaf nodes store the actual contents of
the tuple.

— Secondary indexes must store the Record
ID as their values.
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LEAF NODE VALUES

Microsoft®

Approach #1: Record IDs

— A pointer to the location of the tuple to

which the index entry corresponds. ORACLE
Approach #2: Tuple Data ? o s @
— The leaf nodes store the actual contents of SQLite < SQLServer

the tuple.

— Secondary indexes must store the Record RML-ISQLW ORACLE

ID as their values.
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B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys and

values in all nodes in the tree.
— More space-efficient, since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.
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SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.
Example: Index on <a, b, c>

— Supported: (a=5 AND b=3)
— Supported: (b=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.
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SELECTION CONDITIONS

B,B|[C,C

A,C
el B
-l
AAl[A,B A,C| (B,A

B,B| |B,C

$CMU-DB

15-445/645 (Fall 2021)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS
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SELECTION CONDITIONS
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SELECTION CONDITIONS
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B+TREE — INSERT

Find correct leaf node L.
Put data entry into L in sorted order.

[f L has enough space, done!

Otherwise, split L keys into L and a new node L2
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

Source: Chris Re
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B+TREE — DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only M/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L

soce cnisre  OT sibling) from parent of L.
£=CMU-DB
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B+TREE — DUPLICATE KEYS

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.
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B+TREE — APPEND RECORD ID

5119
}/@ %
.\ O\
1 3 6||7]|]| 8 9 1113
Y Y

$CMU-DB

15-445/645 (Fall 2021 )


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID
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B+TREE — APPEND RECORD ID
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B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

(8]
((o]

’/<5/<9 %
X X

““““ 1143 6([7]s 9 [[13
“““““““ _J R

<Key, RecordId>

0CMU -DB


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID
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B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

(8]
((o]

<5

g

Y
w
(o))
~
©0

(

.*
.
.
.
.
.
.
.
.
.
.
Y
.
.
.
.
.
.
.
.
.
.*
o*

<Key, RecordId>

$CMU-DB

15-445/645 (Fall 2021)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE — APPEND RECORD ID
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B+TREE — APPEND RECORD ID
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B+TREE — OVERFLOW LEAF NODES
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B+TREE — OVERFLOW LEAF NODES
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B+TREE — OVERFLOW LEAF NODES
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B+TREE — OVERFLOW LEAF NODES
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B+TREE — OVERFLOW LEAF NODES
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CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
— If a table does not contain a primary key, the DBMS will
automatically make a hidden primary key.

Other DBMSs cannot use them at all.
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CLUSTERED B+TREE

Index
(Directs search)

Traverse to the left-most leaf page Data Entries

("Sequence set")

and then retrieve tuples from all leaf
pages.

This will always be better than
external sorting. Data Records
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Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.
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Scan Direction
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INDEX SCAN PAGE SORTING

Scan Direction

Retrieving tuples in the order they
appear in a non-clustered index can be
very inefficient.

The DBMS can first figure out all the

tuples that it needs and then sort them
based on their Page ID.
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B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search
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NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals
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MERGE THRESHOLD

Some DBMSs do not always merge nodes when

they are half full.

Delaying a merge operation may reduce the
amount of reorganization.

[t may also be better to just let smaller nodes exist
and then periodically rebuild entire tree.
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VARIABLE-LENGTH KEYS

Approach #1: Pointers
— Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable-Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value

list within the node.
£CMU-DB
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.
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OPTIMIZATIONS

Prefix Compression
Deduplication

Bulk Insert

Many more...
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PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store

only unique suffix for each key.
— Many variations.
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DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed

for hash tables).
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BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.
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BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

Keys: 3,7,9,13, 6, 1
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91113

'
Y
$2CMU-DB

15-445/645 (Fall 2021)

X
"/

33


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first Keys: 3,7,9,13,6, 1
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CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.
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NEXT CLASS

Index Concurrency Control
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