paw

ySte B . Andrew Crotty
15-445/15-645+ | : ' c Computer Science
gy @& Fall2021 ' i L Carnegie Mellon University

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
http://cs.brown.edu/people/acrotty/
http://cs.brown.edu/people/acrotty/

ADMINISTRIVIA

Project #1 was due last night @ 11:59pm
Homework #2 is due Sunday, Oct 3™ @ 11:59pm

Project #2 will be released today and is due on
Sunday, Oct 17 @ 11:59pm

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

QUESTIONS FROM LAST CLASS

(1) Non-prefix lookups in multi-attribute B+Trees

(2) Efficiently merging B+Trees

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.
Example: Index on <a, b, c>

— Supported: (a=5 AND b=3)
— Supported: (b=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

A,A

A,B

C,C

C,D

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

AA[[A,B

o

$2CMU-DB

15-445/645 (Fall 2021)

C,C

C,D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

—{ [#8] [mo] [acc]] —{ [oo] [oca] oo |

(Asn [aacaaD | [ABA [ABB[ABC| [ABD [AcA [ACB | [Acc]ACD[ADA| [ADB [ADC[BAB | [BAD |BBA[BBC| [BCA[BcB [Bec | [BCD[BDA[BDC| [BDD [cAB[cAD | [cBa [cBB [cac| [cmD [ccafocc| [ocp [coa[coB| [coc]pas [Dac) D4 [oB [oac | [Dca [DcB [poc] [Dop |ooc oo |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

—{ [#8] [mo] [acc]] —{ [oo] [oca] oo |

(Asn [aacaaD | [ABA [ABB[ABC| [ABD [AcA [ACB | [Acc]ACD[ADA| [ADB [ADC[BAB | [BAD |BBA[BBC| [BCA[BcB [Bec | [BCD[BDA[BDC| [BDD [cAB[cAD | [cBa [cBB [cac| [cmD [ccafocc| [ocp [coa[coB| [coc]pas [Dac) D4 [oB [oac | [Dca [DcB [poc] [Dop |ooc oo |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

EN N —{ [oo] [oca] oo |

(Asn [aacaaD | [ABA [ABB[ABC| [ABD [AcA [ACB | [Acc]ACD[ADA| [ADB [ADC[BAB | [BAD |BBA[BBC| [BCA[BcB [Bec | [BCD[BDA[BDC| [BDD [cAB[cAD | [cBa [cBB [cac| [cmD [ccafocc| [ocp [coa[coB| [coc]pas [Dac) D4 [oB [oac | [Dca [DcB [poc] [Dop |ooc oo |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[AAA,ABA)

EN N —{ [oo] [oca] oo |

(Asn [aacaaD | [ABA [ABB[ABC| [ABD [AcA [ACB | [Acc]ACD[ADA| [ADB [ADC[BAB | [BAD |BBA[BBC| [BCA[BcB [Bec | [BCD[BDA[BDC| [BDD [cAB[cAD | [cBa [cBB [cac| [cmD [ccafocc| [ocp [coa[coB| [coc]pas [Dac) D4 [oB [oac | [Dca [DcB [poc] [Dop |ooc oo |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[AAA,ABA)

| (s8] [aso] [acc] | \‘ '/ —\ f— \ IWIIEIIEI \‘
[4B SSTAnD | [ABA[ABB [ABC| [ABD [ACA[ACB | [AcC[ACD [ADA| [ADB [ADC [BAB | [DAD[BBA[BBC | [BCA[BCB [BeC| [BoD[BDA | BDC| [BDD]cAB [cAD | [cBA[cB [cac | [coD [oca [ccc| [cco [coa]coB| [coc [DAB [Dac| |Dap [DBB [DBC| [Dca[DCB [Dec| [Dep[pDc oD |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

—{ [ama] [0} [acc] | \‘ '/ —\ f— \ IWIIEIIEI \‘
[4B SSTAnD | [ABA[ABB [ABC| [ABD [ACA[ACB | [AcC[ACD [ADA| [ADB [ADC [BAB | [DAD[BBA[BBC | [BCA[BCB [BeC| [BoD[BDA | BDC| [BDD]cAB [cAD | [cBA[cB [cac | [coD [oca [ccc| [cco [coa]coB| [coc [DAB [Dac| |Dap [DBB [DBC| [Dca[DCB [Dec| [Dep[pDc oD |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[ABA, ABD)

—{ [ama] [0} [acc] | \‘ '/ —\ f— \ IWIIEIIEI \‘
[4B SSTAnD | [ABA[ABB [ABC| [ABD [ACA[ACB | [AcC[ACD [ADA| [ADB [ADC [BAB | [DAD[BBA[BBC | [BCA[BCB [BeC| [BoD[BDA | BDC| [BDD]cAB [cAD | [cBA[cB [cac | [coD [oca [ccc| [cco [coa]coB| [coc [DAB [Dac| |Dap [DBB [DBC| [Dca[DCB [Dec| [Dep[pDc oD |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[ABA, ABD)
S 1

B a9 [ﬁ'@ (400 [aca [Ac | [Acc[AcD[ADA| [ADB [ADC |BAB | [BAD | BBA[BAC | [BcA |BCB [BeC | [BeD [B0A[BDC| |B0D[cAB [cap | [cBA[cmB [cac | [cBD [oca[occ | [oco [coacoB| [coc|pas [pac | [Dap [0B3 [DBC | [DCA[DCB[DOC| [DCD [DOC |D0D |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

—{ [soa] [Jacc] | —{ [oo] [oca] oo |

B a9 [ﬁ'@ (400 [aca [Ac | [Acc[AcD[ADA| [ADB [ADC |BAB | [BAD | BBA[BAC | [BcA |BCB [BeC | [BeD [B0A[BDC| |B0D[cAB [cap | [cBA[cmB [cac | [cBD [oca[occ | [oco [coacoB| [coc|pas [pac | [Dap [0B3 [DBC | [DCA[DCB[DOC| [DCD [DOC |D0D |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[ABD, ACC)
(=] = [=]]

B a9 [ﬁ'@ (400 [aca [Ac | [Acc[AcD[ADA| [ADB [ADC |BAB | [BAD | BBA[BAC | [BcA |BCB [BeC | [BeD [B0A[BDC| |B0D[cAB [cap | [cBA[cmB [cac | [cBD [oca[occ | [oco [coacoB| [coc|pas [pac | [Dap [0B3 [DBC | [DCA[DCB[DOC| [DCD [DOC |D0D |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[ABD, ACC)

~ o ~ s — |ﬁm|mm| —
_ i £
s o] (aloc] [gaflis] [RTaoTin] [o] [et] (ko o] (3o (o[o] [] [ccn e [o w] [o o] [o] [oa[oce] [ooloc o]

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

—{ [#ea] [o] [acc] —{ [oo] [oca] oo |

B a9 [ﬁ'@ [A’_‘@ Acc [AD [ADA | [ADB [ADC [BAB | [BAD [BBA [BBC | [BCA [BcB [BC | [BCD [BDA[BC| [B0D [cAB [cap | [cBA [cmB [cac | [cn[ocaJocc | [oco [coalcoB) [coc|Das [pac | [Dap D83 [DBC | [DCA[DCB]DOC] [DCD | DOC |DDD |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[ACC,ADB)

—{ [#ea] [o] [acc] —{ [oo] [oca] oo |

B a9 [ﬁ'@ [A’J@ Acc [AD [ADA | [ADB [ADC [BAB | [BAD [BBA [BBC | [BCA [BcB [BC | [BCD [BDA[BC| [B0D [cAB [cap | [cBA [cmB [cac | [cn[ocaJocc | [oco [coalcoB) [coc|Das [pac | [Dap D83 [DBC | [DCA[DCB]DOC] [DCD | DOC |DDD |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 =

[ACC,ADB)

II';EIII?.EIIEII f* \ IWIIEIIEI \‘
\ADB\ADC\BAB\ (5D B3A | BBC | |BCA [BCB [BcC | [BoD [BDA [BDC| [B0D [cAB [cAD | [cBAcaB [cac | [cuD [cca[ccc | [cco [cpa]coB| [coc [DAB |Dac| [DaD [DBB [DBC| [Dc[DCB [DCC| [DCD[DDC | DOD |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

—{ [oe] [oca] [oon] |
’@ [ADB [ADC [BAB | [BAD[BBA [BBC | [BCA[BCB [BoC| [BoD[BDA [BDC] [BDD [CAB [caD | [cBA [chB [cac | |cuD [cca[ccc| [cco[coa|coB| [coc[DAB |Dac] [Dap BB [DC| [Dca[DcB [Dec| [Dcp[poc | om |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

=3 mghs

i
[| [[T |

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

=3 mghs

i
[| [[T |

“Skip Scan”

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

MERGING B+TREES

Approach #1: Off-line
R . R Online B-Tree Merging
— Block all operations until done merging. S ——
Approach #2: Eager e S —
— Access both during merge; move batches eagerly. Smmosiaien g
Approach #3: Background e Eesae
— Copy + merge in background; apply missed updates. | EEEEEEEE o
Approach #4: Lazy e
— Designate one as main and other as secondary. o B
— If leaf in main not yet updated, merge =
corresponding key range from secondary.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

We (mostly) assumed all the data structures that
we have discussed so far are single-threaded.

But we need to allow multiple threads to safely

access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

We (mostly) assumed all the data structures that
we have discussed so far are single-threaded.

But we need to allow multiple threads to safely

access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

I They Don't Do This!

VOLTDB .
&P redis Store

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://voltdb.com/
https://redis.io/

CONCURRENCY CONTROL

A concurrency control protocol is the method

that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is

supposed to see?
— Physical Correctness: s the internal representation of

the object sound?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONCURRENCY CONTROL

A concurrency control protocol is the method

that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: s the internal representation of
the object sound?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching
Leaf Node Scans

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LOCKS VS. LATCHES

Locks

— Protect the database's logical contents from other txns.
— Held for txn duration.
— Need to be able to rollback changes.

Latches

— Protect the critical sections of the DBMS's internal data
structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LOCKS VS. LATCHES

Locks Latches
Separate... User Transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe

$CMU-DB

15-445/645 (Fall 2021)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LOCKS VS. LATCHES

Locks Latches
Separate... User Transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LOCKS VS. LATCHES

m/‘ Locks

Latches

Separate... User Transactions
Protect... Database Contents
During... Entire Transactions

Modes... Shared, Exclusive, Update,
Intention

Deadlock Detection & Resolution
...by... Waits-for, Timeout, Aborts
Keptin... Lock Manager

Source: Goetz Graefe

$CMU-DB

15-445/645 (Fall 2021)

Threads
In-Memory Data Structures

Critical Sections

Read, Write

Avoidance
Coding Discipline

Protected Data Structure

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15445.courses.cs.cmu.edu/fall2021/schedule.html#oct-27-2021

LATCH MODES

Read Mode

— Multiple threads can read the same object
at the same time.

— A thread can acquire the read latch if
another thread has it in read mode.

Write Mode

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.

$CMU-DB

15-445/645 (Fall 2021)

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH MODES

Read Mode

— Multiple threads can read the same object
at the same time.

— A thread can acquire the read latch if
another thread has it in read mode.

Write Mode

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.

$CMU-DB

15-445/645 (Fall 2021)

-----R

Compatibility Matrix
Read Write

Read v 4 X
Write X X

13

J

\-----‘

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Blocking OS Mutex
Test-and-Set Spin Latch
Reader-Writer Latches

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

std: :mutex m;

m.lock();
// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

std: :mutex m;—pthread_mutex_t

m.lock();
// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

std: :mutex m;—pthread_mutex_t
° }

m.lock(); (R

// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex B OS Latch

ﬁ Userspace Latch

std: :mutex m;—pthread_mutex_t
- }

m.lock(); (R

// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex B OS Latch

ﬁ Userspace Latch

o O

std: :mutex m;—pthread_mutex_t
° }

m.lock(); (R

// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

15

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex B OS Latch

ﬁ Userspace Latch

std: :mutex m;—pthread_mutex_t
° }

m.lock(); (R

// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex B OS Latch

ﬁ Userspace Latch

o

std: :mutex m;—pthread_mutex_t

: ¥
m.lock(); (R ﬁ

// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

15

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex B OS Latch

ﬁ Userspace Latch

o

std: :mutex m;—pthread_mutex_t

: ¥
m.lock(); (R ﬁ

// Do something special. ..
m.unlock();

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

16

LATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)
— Very efficient (single instruction to latch/unlatch)

— Non-scalable, not cache-friendly, not OS-friendly

— Example: std: :atomic<T>

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

16

LATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache-friendly, not OS-friendly
— Example: std: :atomic<T>

std::atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

16

LATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache-friendly, not OS-friendly
— Example: std: :atomic<T>

std::atm“”"“bool>

std::atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache-friendly, not OS-friendly
— Example: std: :atomic<T>

std,::atOW"“boo1>

std::atomic_flag latch; m

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache-friendly, not OS-friendly
— Example: std: :atomic<T>

std::atom"*“bool>
std::atomic_flag latch; i
while (latch.test_and_set(..)) {
// Retry? Yield? Abort?
3

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

stdz:atomics

$CMU-DB

15-445/645 (Fall 2021)

Room: Moderated Discussions

The whole post Seems to be just wrong, and is measuring something completely different than what the author thinks and claims jt is
measuring.

First off, spinlocks can only be used if You actually know you're not being scheduled while using them. But the blog post author seems to be

implementing his own spinlocks in user space with Nno regard for whether the lock user might be scheduled or not. And the code used for the
claimed "lock not held" timing is complete garbage.

It basically reads the time before releasing the lock, and then it reads it after acquiring the lock again, and claims that the time difference is
the time when no lock was held. Which is just inane and pointless and completely wrong.
That's pure garbage. What happens is that

) since you're spinning, you're using CPU time

(a
— Non-scal

(b) at a random time, the scheduler will schedule you out

—_—> EXample (c) that random time might ne just after You read the "current time", but before you actually released the spinlock.
bool>

So now you still hold the lock, but You got scheduled away from the CPU, because you haq used up your time slice, The "current time" you
read is basically now stale, and has nothing to do with the (future) time when You are actually going to release the lock.

Somebody else comes in and wants that "spinlock”, and that somebody will nhow spin for a long while, since nobody is releasing it - jt's stjj)
s td : : a tO held by that other thread entirely that was just scheduled out. At some point, the scheduler says "ok, now you've used your time slice", and

o the time and says "oh, a long time passed without the lock being held at ajl",
L]
¢ And notice how the above is the good schenario. If you have more threads than CPU's (maybe because of other processes unrelated to your
° own test load), maybe the next thread that gets shceduled isn't the one that is going to release the lock. No, that one already got its
Wh 1 1 e (timeslice, so the next thread scheduled might be another thread that wants that lock that is stilf being held by the thread that isn't even
running right now!

/ / R So the code in question is pure garbage. You can't do spinlocks like that. Or rather, you Very much can do them Jike that, and when you do
that you are measuring random latencies and getting nonsensical values, because what You are measuring is "l have a lot of busywork,
} where all the processes are CPU-bound, and I'm measuring random points of how long the scheduler kept the process in place".

[values.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

Room: Moderated Discussions

The whole post Seems to be just wrong, and is measuring something completely different than what the author thinks and claims jt is
measuring.

First off, spinlocks can only be used if You actually know you're not being scheduled while using them. But the blog post author seems to be

implementing his own spinlocks in user space with Nno regard for whether the lock user might be scheduled or not. And the code used for the
claimed "lock not held" timing is complete garbage.

It basically reads the time before releasing the lock, and then it reads it after acquiring the lock again, and claims that the time difference is
the time when no lock was held. Which is just inane and pointless and completely wrong.

That's pure garbage. What happens is that
) since you're spinning, you're using CPU time

(a
— Non-scal

(b) at a random time, the scheduler will erhad.u

- SS ou rent time" you
| repeat: do not use spinlocks in user space, u:![ﬁat t)r:e y
actually know what you're doing. And be awar -

ne slice", and

. . . .I- nen it looks at
likelihood that you know what you are doing is basically ni

related to your
TEToneareauy got its
reaeTIatwWans that lock that is stil| being held by the thread that isn't even

gt TIoOWT

/ / R So the code in question is pure garbage. You can't do spinlocks like that. Or rather, you very much can
that you are measuring random latencies and getting nonsensical values, because what You are measuring is "l have a lot of busywork,

[values.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

o o

read wrlte
ﬁ: =
X =0 X =0

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

o

Latch

o

read wrlte
ﬁ =
X =0 X =0

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

o

ﬁ

read wrlte
ﬁ =
X =0 X =0

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

o

ﬁ

read wrlte
ﬁ =
X =0 X =0

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

o

£-43—

read wrlte
ﬁ =
X =0 X =0

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

o

£5-43—

read wrlte
ﬁ =
X =0 X =0

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

6668 o

read wrlte

=2
X =0 B_e

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

66886

read wrlte

=2
X =0 E—1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

Latch

t-4-6-8 ﬁ—#

read wrlte
£CMU-DB

15-445/645 (Fall 2021)

B-@ B =1

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH IMPLEMENTATIONS

Choice #3: Reader-Writer Latches

— Allows for concurrent readers
— Must manage read/write queues to avoid starvation
— Can be implemented on top of spin latches

g a ﬂ Latch

6o ﬁ—#

read wrlte
£CMU-DB

15-445/645 (Fall 2021)

E =1 B =1

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

18

HASH TABLE LATCHING

Easy to support concurrent access due to the

limited ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE LATCHING

Approach #1: Page Latches

— Each page has its own reader-writer latch that protects its
entire contents.

— Threads acquire either a read or write latch before they
access a page.

Approach #2: Slot Latches

— Each slot has its own latch.
— Can use a single-mode latch to reduce meta-data and
computational overhead.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

££CMU-DB
15-445/645 (Fall 2021

HASH TABLE — PAGE LATCHES

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

T;:Find D
hash(D)

££CMU-DB
15-445/645 (Fall 202

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

T, Find D -

hash(D)

££CMU-DB
15-445/645 (Fall 202

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D o
hash(D)
\ A | val
C|lval
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D
hash(D) ni
Alval
C|lval
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D o T,: Insert E
hash(D) : hash(E)
Alval
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D o T,: Insert E
hash(D) : hash(E)
Alwval /
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D o g T,: Insert E
hash(D) : hash(E)
Alwval /
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D o g T,: Insert E
hash(D) hash(E)
Alwval /
»I C|lval
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D o g T,: Insert E
hash(D) hash(E)
Alwval /
C|val
» D|val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D o g T,: Insert E
hash(D) hash(E)
Alwval /
C|val
» D|val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

[It’s safe to release the B|val

latch on Page #1.

g T,: Insert E

hash(D) = hash(E)
Alwval /
C|val

» D|val

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D g T,: Insert E

hash(D) hash(E)
Alwval /
C|val

L

» D|val

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D g T,: Insert E
hash(D) hash(E)
Alwval /
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D T,: Insert E
hash(D) hash(E)
Alval
C|val h
D | val
$=CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D T,: Insert E
hash(D) % hash(E)
Alval
C|val h
D | val
$=CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D

D | val h

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — PAGE LATCHES

B|val
T;: Find D T,: Insert E
hash(D) hash(E)
Alval
@a C|val
D | val
E|val I‘
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val
T;: Find D T,: Insert E
hash(D) hash(E)
Alval
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val
T;: Find D T,: Insert E
hash(D) hash(E)
\ A | val
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val
T;: Find D T,: Insert E
hash(D) @6 hash(E)
Alval
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val
T;: Find D T,: Insert E
hash(D) (R) hash(E)
W BA|val
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val
T;: Find D T,: Insert E
hash(D) (R) hash(E)
A Alval /
C|lval
D | val
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

T;: Find D T,: Insert E
hash(D) hash(E)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

T;: Find D T,: Insert E
hash(D) hash(E)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

It’s safe to release the
T, latch on A T,: Insert E

hash(E)

has.h(D)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val
T;: Find D T,: Insert E
hash(D) hash(E)
Xw 4
C|lva
D | val
$=CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val
T;: Find D T,: Insert E
hash(D) hash(E)
g »| A|val
C|val

Dlgﬁ

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

T;: Find D T,: Insert E
hash(D) hash(E)

n Alval
' Y C|val
Dlgﬁ

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

T;: Find D T,: Insert E
hash(D) hash(E)

n Alval
g W QC|val
Sl

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

T;: Find D T,: Insert E
hash(D) hash(E)

n Alval
g W QC|val
Dl@

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

T;: Find D T,: Insert E
hash(D) hash(E)

n Alval
g W QC|val

D|

E|va

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — SLOT LATCHES

B|val

T;: Find D T,: Insert E
hash(D) hash(E)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

£CMU-DB

HASH TABLE — NO LATCHES?

= 06 - Hash Tables (CMU Intro to Database Systems / Fall 2021)

LINEAR PROBE HASHING

B|val

A | val

C|val

D |val

mTmO O W

E|val

F|val

14 > Pl) 22:48/1:18:40 Scroll for details

v

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASH TABLE — NO LATCHES?

= 06 - Hash Tables (CMU Intro to Database Systems / Fall 2021)

LINEAR PROBE HASHING

B|val

A | val

C|val

D | val

HED O W S

— E|val

F|val

22mA48s

B 14 > Pl) 22:48/1:18:40 Scroll f(z/r details
$=CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#oct-23-2019

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

20 __sync_bool_compare_and_swap(&M, 20, 30)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

23

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— [f values are equal, installs new given value V’ in M

— Otherwise, operation fails
New

Address Value

20 __sync_bool_compare_and_swap(&M, 20, 30)

Compare
£2CMU-DB Value

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— [f values are equal, installs new given value V’ in M

— Otherwise, operation fails
New

Address Value

30 __sync_bool_compare_and_swap(&M, 20, 30)

Compare
£2CMU-DB Value

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE MULTI-THREADED EXAMPLE

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

ol TIA T,: Delete 44

10 35 B

6 12 Hb23/ Cks 44 (|D

LV N /S \¥
- 110[11{12]13H 20] 22K 23]31H 35] 36 { 38] 41 44

E F G H I

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

X T,: Delete 44

10 35 B

6 12 Hb23/ Cks 44 (|D

LV N /S \¥
- 110[11{12]13H 20] 22K 23]31H 35] 36 { 38] 41 44

E F G H I

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

ol TIA T,: Delete 44

10 35 B

6 12 Hb23/ Cks 44 (|D

j \I -l11-\1‘213—2{22-§331-3j536-§84 «

E F G H I

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

ol TIA T,: Delete 44

10 35 B

6 12 Hb23/ Cks 44 (|D

AN LA LN

11712[13720|22123|31135|3638
E F G H |

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

ol TIA T,: Delete 44

10 35 B

6 12 Hb23/ Cks 44 (|D

R A W NV

11712[13720|22123|31135|3638 «
E F G H |

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

ol TIA T,: Delete 44

10 35 B

6 12 Hb23/ Cks 44 (|D

AR W S

(08)
N
(o))}
<o)
—
S

11712[13720|22123|31135|36138|4 «
E F G H

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

ol TIA T,: Delete 44

10 35 B

6 12 Hb23/ Cks 44||D g

b s €

11712[13720|22123|31135|36138|4 «
E F G H

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE
ol TIA T,: Delete 44

/ T,: Find 41

10 35 B

6 12 Hb23/ Cks 44||D g

A LN SN N

1112|131 20(22H23|31H{35|36 {3441} «

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE
ol TIA « T,: Delete 44

/ T,: Find 41

10 35 B

6 12 Hb23/ Cks 44||D g

A LN SN N

1112|131 20(22H23|31H{35|36 {3441} «

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE
ol TIA T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H%/ c\{ﬁ‘g 44]|D 4= 5

j \I l \ / S{ j \ Rebalance!
- H10(11 12|13 20|22H23|31H35|36 H34{ 41} «

E F G H I

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE
ol TIA T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H%/ c\{ﬁ‘g 44]|D 4= 5

j \I l \ / S{ j \ Rebalance!
- H10(11 12|13 20|22H23|31H35|36 H34{ 41} «

E F G H I

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE
ol TIA T,: Delete 44

/ T,: Find 41

10 35 B

o B e ek

T Y N WY A N

1112|131 20(22H23|31H{35|36 {3441} «

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE
ol TIA T,: Delete 44

/ T,: Find 41

10 35 B

o B e ek

AN LU LS

1M12(13™20(22723|131035|36[3 «

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

B+TREE MULTI-THREADED EXAMPLE

20

A

T,: Delete 44

/ T,: Find 41
10 35 B
6 12 Hb23/ Cks 41 (|D
j \l l \ / S{ j \ Rebalance!
3/406|9H10[11A12[1320|22H23[31H35|36H3 41 «
E G

$CMU-DB

15-445/645 (Fall 2021)

H I
4 222

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.

Basic Idea:

— Get latch for parent
— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.
— Not full (on insertion)
e — More than half-full (on deletion)

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly,

— Acquire R latch on child
— Then unlatch parent

Insert/Delete: Start at root and go down,

obtaining W latches as needed. Once child is

latched, check if it is safe:
— If child is safe, release all latches on ancestors

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38
e @
0

35 B

1

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

A

T
@ C

1

35 B«

(08)
N
(@))
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

320 A

1/ : 35 B«

It is now safe to release
the latch on A.
6 2 73 C |[38]/44||D

(08)
N
(o))}
<o)
—
S

1MR12(13/20(22723|31 38

|
(G8)
ol
w
(@))]
|

LA LN LA LN

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

20 A

1/ : 35 B«

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

111701211320 (22123|{3135[36[%K

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

/

10 35 B

6 12 Hb23/ C}s 44 ||D

20 A

3
aH6|9H10[11H12[1320|22H23(31H35] 30088 k

w

)
E F G H

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1 — FIND 38

/

10 35 B

20 A

w\
1N
o €
(Co)
> [€—
5/
|
N
S
l\)\
N
B e
LUL'I)&
w
o))
(:)‘
..OO
N 4

111 13 311

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

o=
— N

1 35 B

6 12 Hb23/ Cks 44 (|D

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38
<I§m

/ W

10 35 B «

6 12 Hb23/ Cks 44 (|D

LA LN LA AN

(08)
N
(@))
<o)
—
S

1M112(13m20(22R723(31135|36 38

E F G H I

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

29

EXAMPLE #2 — DELETE 38

5

A

/

10

W

35 B«

(W e may need to coalesce B, so
we cant release the latch on A.

J

6 12 23 C ||38(|44||D
314H6|9H10[11H12|13H20{22H23[31H35|36H38 4}14

$CMU-DB

15-445/645 (Fall 2021)

F G H I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

s
@ C

1

(08)
N
(@))
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

5

A
/ w
10 35 B
6 12 23 38 || 44
j \l l W e know that D will not \
merge with C, so it is safe to
31416901011 release latcheson Aand B. |38

$CMU-DB

15-445/645 (Fall 2021)

=l

U

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

6 12 23 38 || 44

(08)
N
(o))}
<o)
—
S

j \l l W e know that D will not \
merge with C, so it is safe to
- - 41H44

11 release latches on Aand B. |38

E F G H

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

111 13 311

w\
1N
o €
(o)
> [€—
5/
|
N
S
l\)\
N
> e
w
U‘Ij
(%)
N
par /

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

6 12 Hb23/ Cks 44 (|D

20 A

(08)
N
(o))}
<o)
—
S

VR o S

E F G H

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

6 12 Hb23/ Cks 44 (|D

20 A

(08)
N
(o))}
<o)
—
S

VR o

E F G H

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

111 13 311

w\
1N
o €&
(o)
o [€—
Sl
|
N
S
l\)\
N
B e
LUL'I)&
w
@

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INSERT 45

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INSERT 45
<I§m

/ W

10 35 B «

6 12 Hb23/ Cks 44 (|D

LA LN LA AN

(08)
N
(@))
<o)
—
S

1M112(13m20(22R723(31135|36 38

E F G H I

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

30

EXAMPLE #3 — INSERT 45

5

/

10

A

W

35 B«

We know that if D needs to

split, B has room so it is safe
to release the latch on A. C |l38!l44||D

&

w

9n1o(11n12|113M2

022

AR RN

123(31135(3638

$CMU-DB

15-445/645 (Fall 2021)

F G H I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INSERT 45

20 A

G

10 35 B

(08)
N
(@))
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

30

EXAMPLE #3 — INSERT 45

20 A
/ W
10 35 B
6 12 23 38|44 ||D
314H6|9H10[11R12[13M20|22H23|31H35|36H38(41

$CMU-DB

15-445/645 (Fall 2021)

can release B+D.

[Node I will not split, so we |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

30

EXAMPLE #3 — INSERT 45

20 A
/
10 35 B
6 12 23 C ||38]|44]||D
R A T A
3|14H6[9710[11H12[1320(22H23|31H35|36H38[41

$CMU-DB

15-445/645 (Fall 2021)

can release B+D.

[Node I will not split, so we |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INSERT 45

20 A
/
10 35 B
6 12 23 C ||38]|44]||D
R A T A
3|14H6[9710[11H12[1320(22H23|31H35|36H38[41

$CMU-DB

15-445/645 (Fall 2021)

[Node I will not split, so we

can release B+D.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INSERT 45

/

10 35 B

20 A

1112|131 20(22H23|311{35|36 38|41 44 45)

(08)
N
(o))}
<o)
—
S

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25
<I§m

/ W

10 35 B«

6 12 Hb23/ Cks 44 (|D

LA LN LA LN

(08)
N
(@))
<o)
—
S

1M112(13m20(22R723(31135|36 38

E F G H I

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

20 A

1/ - 35 B«

6 12 Hb23/ Cks 44 (|D

LA LN LA LN

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

E F G H I

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

20 A

G

10 35 B

(08)
N
(@))
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10

20 A

(08)
N
(@))
<o)
—
S

1112113

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

38|44 ||D

(08)
S
(@]
o)

; 110111112[13 1201271088 | 31.) 4B6 [38 4}14

7~

We need to split F, so we need to
hold the latch on its parent node.

$CMU-DB

15-445/645 (Fall 2021)

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

38|44 ||D

(08)
S
(@]
o)

; 110111112[13 1201271088 | 25) 4B6 [38 4}14

7~

We need to split F, so we need to
hold the latch on its parent node.

$CMU-DB

15-445/645 (Fall 2021)

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

38| 44

(08)
S
(@]
o)

y
. 110111112[13 1201271088 | 25) €B6 [38 4}14

We need to split F, so we need to
hold the latch on its parent node.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

4 N\ 4 N\ 4
Delete 38 Insert 45 Insert 25
%2@ A %2@ A %2@
_ _J _ _J _

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

4 N\ 4 N\ 4
Delete 38 Insert 45 Insert 25
%2@ A %2@ A %2@
_ _J _ _J _

Taking a write latch on the root every time

becomes a bottleneck with higher concurrency.
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

[f you guess wrong, repeat traversal
with the pessimistic algorithm.

$CMU-DB

15-445/645 (Fall 2021)

Acta Informatica 9, 1-21 (1977)

© by Sprin

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-t an be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation {1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

* Permanent address: lostitut fle Informatik der Technischen Universitit Miinchen, Arcisstr. 21,
D-8000 Misnchen 2, Germany (Fed, Rep)

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://link.springer.com/article/10.1007/BF00263762

34

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38
e @
0

1 35 B

6 12 Hb23/ Cks 44 (|D

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

20 A

1/ : 35 B«

6 12 Hb23/ Cks 44 (|D

LA LN LA AN

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

E F G H I

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

111 13 311

w(\
1N
o €
(o)
> [€—
5/
|
N
S
l\)\
N
N
w
o1 -
3:
N
par /

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

111 13 311

w\
1N
o €
(o)
> [€—
5/
|
N
S
l\)\
N
> e
w
U‘Ij
(%)
N
par /

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

35

EXAMPLE #2 — DELETE 38

20 A
/
10 35 B
6 12 23 C ||38]|44]||D
IV b N /)
3|14H6[9710|11H12[1320(22H23|31H35[36 1

$CMU-DB

15-445/645 (Fall 2021)

[

H will not need to coalesce, so
were safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

35

EXAMPLE #2 — DELETE 38

20 A
/
10 35 B
6 12 23 C ||38]|44]||D
IV b N /)
3|14H6[9710|11H12[1320(22H23|31H35[36 1

$CMU-DB

15-445/645 (Fall 2021)

[

H will not need to coalesce, so
were safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

35

EXAMPLE #2 — DELETE 38

/

10 35 B

6 12 23 C ii38 44 ||D

[V N S

1MR12(13/20(22R023(31135

20 A

(08)
N
(o))}
<o)
—
S

[H will not need to coalesce, so

)
r
- CMUDB we re safe!

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

Hb23/ Cks 44 ||D

20 A

6 12
We need to split F, so we ~
have to restart and re- G H
execute like before.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

The threads in all the examples so far have

acquired latches in a “top-down” manner.

— A thread can only acquire a latch from a node that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 A«

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1

O T;: Find Keys < 4
h 3 A «
/ /\\,
1| 2 3 || 4
B ~— C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 A
ﬂ._
1 (]| 2 34«
B ~—" C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 f Do Inlot release latch on C]

/ until thread has latch on B
CFs,
1 2 1 3 4

B ~—+4 C
&

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 f Do Inlot release latch on C]

until thread has latch on B
CFs,
1 2 1 3 4

B ~—+4 C
s

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4
G% A /\\;
Y ERE 3 (| 4

B ~—" C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
» : A 4a T,: Find Keys > 1

VAN

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
O T;: Find Keys < 4
T,: Find Keys > 1
3 A «
/ /\\,
1| 2 3 || 4
B ~— C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
O T;: Find Keys < 4
: A T,: Find Keys > 1

Rut
12\/34«

B C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

P
1| 2 34«

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
|BothT1and T, nowholc.ljZ: S Keys >

this read latch.
1 3 || 4

B»K/‘«C

Both T, and T, now hold
this read latch.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
|BothT1and T, nowholc.ljZ: S Keys >

this read latch.
i,
| «

B ~—" C

Both T, and T, now hold
this read latch.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
[Only T, holds] (" Only T, holds]Tzi Find Keys > 1

this read latch. \ this read latch.
W T3]« 4n

B ~—" C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NEXT CLASS

We are finally going to discuss how to execute
some queries...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

