paw

Intro to Database
15-445/ 15.-6'4.‘5"‘_;‘
Fall 2021 '

Andrew Crotty
Computer Science
Carnegie Mellon University

[°
\\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
http://cs.brown.edu/people/acrotty/
http://cs.brown.edu/people/acrotty/

ADMINISTRIVIA

Homework #2 is due Sunday, Oct 3™ @ 11:59pm

Project #2 is due Sunday, Oct 17 @ 11:59pm
— Q&A Session on Thursday, Sept 30® from 5-6pm
— See the Piazza post for details

Mid-Term Exam is Wednesday, Oct 13

— During regular class time from 3:05-4:25pm
— More details next week...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

4 N\ 4 N\ 4
Delete 38 Insert 45 Insert 25
%2@ A %2@ A %2@
_ _J _ _J _

Taking a write latch on the root every time

becomes a bottleneck with higher concurrency.
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

[f you guess wrong, repeat traversal
with the pessimistic algorithm.

$CMU-DB

15-445/645 (Fall 2021)

Acta Informatica 9, 1-21 (1977)

© by Sprin

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-t an be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation {1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

* Permanent address: lostitut fle Informatik der Technischen Universitit Miinchen, Arcisstr. 21,
D-8000 Misnchen 2, Germany (Fed, Rep)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://link.springer.com/article/10.1007/BF00263762

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38
e @
0

1 35 B

6 12 Hb23/ Cks 44 (|D

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

20 A

1/ : 35 B«

6 12 Hb23/ Cks 44 (|D

LA LN LA AN

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

E F G H I

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

111 13 311

w(\
1N
o €
(o)
> [€—
5/
|
N
S
l\)\
N
N
w
o1 -
3:
N
par /

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

111 13 311

w\
1N
o €
(o)
> [€—
5/
|
N
S
l\)\
N
> e
w
U‘Ij
(%)
N
par /

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

6 12 23 C ||38(|44||D

[V LN /)

1MR12(13M20(22023(31135(36 k

(08)
N
(o))}
<o)
—
S

[H will not need to coalesce, so

J
r
- CMUDB we re safe!

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

20 A

6 12 23 C ||38(|44||D

[V LN /)

1MR12(13M20(22023(31135(36 k

(08)
N
(o))}
<o)
—
S

[H will not need to coalesce, so

J
r
- CMUDB we re safe!

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — DELETE 38

/

10 35 B

6 12 23 C ii38 44 ||D

[V N S

20 A

(08)
N
(o))}
<o)
—
S

1MR12(13/20(22R023(31135

[H will not need to coalesce, so

)
r
- CMUDB we re safe!

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

20 A

(08)
N
(o))}
<o)
—
S

1M112(13m20(22R723(31135|36 38

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #4 — INSERT 25

/

10 35 B

Hb23/ Cks 44 ||D

20 A

6 12
We need to split F, so we ~
have to restart and re- G H
execute like before.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

OBSERVATION

The threads in all the examples so far have

acquired latches in a “top-down” manner.

— A thread can only acquire a latch from a node that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 A«

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1

O T;: Find Keys < 4
h 3 A «
/ /\\,
1| 2 3 || 4
B ~— C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 A
ﬂ._
1 (]| 2 34«
B ~—" C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 f Do Inlot release latch on C]

/ until thread has latch on B
CFs,
1 2 1 3 4

B ~—+4 C
&

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 f Do Inlot release latch on C]

until thread has latch on B
CFs,
1 2 1 3 4

B ~—+4 C
s

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4
G% A /\\;
Y ERE 3 (| 4

B ~—" C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
» : A 4a T,: Find Keys > 1

VAN

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
O T;: Find Keys < 4
T,: Find Keys > 1
3 A «
/ /\\,
1| 2 3 || 4
B ~— C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
O T;: Find Keys < 4
: A T,: Find Keys > 1

Rut
12\/34«

B C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

P
1| 2 34«

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
|BothT1and T, nowholc.ljZ: S Keys >

this read latch.
1 3 || 4

B»K/‘«C

Both T, and T, now hold
this read latch.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
|BothT1and T, nowholc.ljZ: S Keys >

this read latch.
i,
| «

B ~—" C

Both T, and T, now hold
this read latch.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
[Only T, holds] (" Only T, holds]Tzi Find Keys > 1

this read latch. \ this read latch.
W T3]« 4n

B ~—" C

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

14

COURSE STATUS

We are now going to talk about how Query Planning
to execute queries using the DBMS
components we have discussed so far.

Operator Execution

Access Methods
Next four lectures:
— Operator Algorithms
— Query Processing Models
— Runtime Architectures

Buffer Pool Manager

Disk Manager

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

COURSE STATUS

We are now going to talk about how
to execute queries using the DBMS
components we have discussed so far.

Next four lectures:

— Operator Algorithms

— Query Processing Models
— Runtime Architectures

$CMU-DB

15-445/645 (Fall 2021)

Query Planning

Operator Execution
Access Methods

Buffer Pool Manager

Disk Manager

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.

The output of the root node is the
result of the query.

$CMU-DB

15-445/645 (Fall 2021)

15

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.1id
AND B.value > 100

G value>100
N

A B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely
in memory, a disk-oriented DBMS cannot assume
that query results fit in memory.

We are going to rely on the buffer pool to
implement algorithms that need to spill to disk.

We are also going to prefer algorithms that
maximize the amount of sequential I/O.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TODAY'S AGENDA

External Merge Sort
Aggregations

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a
specific way (ORDER BY).

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a
specific way (ORDER BY).

But even if a query does not specify an order, we

may still want to sort to do other things:

— Trivial to support duplicate elimination (DISTINCT)
— Bulk loading sorted tuples into a B+ Tree index is faster
— Aggregations (GROUP BY)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTING ALGORITHMS

[f data fits in memory, then we can use a standard
sorting algorithm like quicksort.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTING ALGORITHMS

[f data fits in memory, then we can use a standard
sorting algorithm like quicksort.

[f data does not fit in memory, then we need to use
a technique that is aware of the cost of reading and
writing disk pages...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXTERNAL MERGE SORT

Divide-and-conquer algorithm that splits data into
separate runs, sorts them individually, and then

combines them into longer sorted runs.

Phase #1 — Sorting

— Sort chunks of data that fit in memory and then write
back the sorted chunks to a file on disk.

Phase #2 — Merging

— Combine sorted runs into larger chunks.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTED RUN

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).

$CMU-DB

15-445/645 (Fall 2021)

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTED RUN

A run is a list of key/value pairs.

Early Materialization
. K1 <Tuple Data>
Key: The attribute(s) to compare = Tuple Datas

to compute the sort order.

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).

$CMU-DB

15-445/645 (Fall 2021)

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTED RUN

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).

$CMU-DB

15-445/645 (Fall 2021)

Early Materialization

K1

<Tuple Data>

K2

<Tuple Data>

Late Materialization

21

K1

o

K2 B Jeeel Kn

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTED RUN

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).

$CMU-DB

15-445/645 (Fall 2021)

Early Materialization

K1

<Tuple Data>

K2

<Tuple Data>

Late Materialization

21

K1

o K2 B Jeeel Kn

\ Record ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

We will start with a simple example of a 2-way

external merge sort.
— “2” is the number of runs that we are going to merge into
a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool
pages to hold input and output data.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

- Memory
Disk ==
Page #1 Page #2

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Memory
Disk

Page #1 Page #2

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Memory
Disk

Page #1 Page #2

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

Memory

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long
— Uses three buffer pages (2 for input pages, 1 for output)

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long
— Uses three buffer pages (2 for input pages, 1 for output)

Memory Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long
— Uses three buffer pages (2 for input pages, 1 for output)

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long
— Uses three buffer pages (2 for input pages, 1 for output)

Memory

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

Pass #0

— Read all B pages of the table into memory
— Sort pages into runs and write them back to disk

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long
— Uses three buffer pages (2 for input pages, 1 for output)

Memory

Memory

Disk
Page #1 Page #2
¢ ¢ Sorted
Run

$CMU-DB

15-445/645 (Fall 2021)

Final Result

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

In each pass, we read and write
every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

In each pass, we read and write
every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

[3,4|6,2]9,4]|8,7]|56|3,1] 2 | o |

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

2-WAY EXTERNAL MERGE SORT

In each pass, we read and write
every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

[3,4|6,2]9,4]|8,7]|56|31] 2| »

EOF

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

[3,4|6,2]9,4]|8,7]|56|31] 2| »

In each pass, we read and write Pass#0 1-PAGE
c [3,4]2,6]|49]|7,8]56[1,3] 2| o | RUNS
every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

[3,4|6,2]9,4]|8,7]|56|31] 2| »

In each pass, we read and write Pass#0 | 1-PAGE
. 3,4|26|49|7,8|56[1,3] 2| o | RUNS

every page in the ﬁle. e #1 .. \/ Z—PAGE

RUNS

Number of passes

=1+ [log, N]

Total I/O cost

= 2N - (# of passes)

£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

[3,4|6,2]9,4]|8,7]|56|31] 2| »

In each pass, we read and write Pass#0 | 1-PAGE
. 3,426)49 |7,8|56[1,3] 2 | o | RUNS

every page in the ﬁle. e #1 .. \/ Z—PAGE

RUNS

Number of passes

=1+ [log, N]

Total I/O cost

= 2N - (# of passes)

£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

EOF
§|3,4|6,2|9,4|s,7|5,6|3,1|2|ra
In each Pass) We read and Write PASS #0 I ... I_PAGE
. - |8.4]26]|49]78]|56[1,3] 2 [» RUNS
every page in the file. biss #1; E\/ L — / e
RUNS
Number of passes
=1+ [log, N]
Total I/O cost
= 2N - (# of passes)
$2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

EOF
§|3,4|6,2|9,4|s,7|5,6|3,1|2|ra
In each Pass) We read and Write PASS #0 I ... I_PAGE
. - |8.4]26]|49]78]|56[1,3] 2 [» RUNS
every page in the file. biss #1; ﬁ\/ L — / e
RUNS
Number of passes
=1+ [log, N]
Total I/O cost
= 2N - (# of passes)
$2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

[3,4|6,2]9,4]|8,7]|56|31] 2| »

In each pass, we read and write Pass#0 | 1-PAGE
. 3,4|26|49|7,8|56[1,3] 2| o | RUNS

every page in the ﬁle PASS #1 \23{[\\47/ \1 / \ 2/ Z—PAGE

e ' 56 ; RUNS

Number of passes

=1+ [log, N]

Total I/O cost

= 2N - (# of passes)

£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

[3,4|6,2]9,4]|8,7]|56|31] 2| »

In each Pass) We read and Write PASS #0. | ... I_PAGE
. 3,4|26|49|7,8|56[1,3] 2| o | RUNS

every page in the ﬁle PASS #1 \23{1 \\47/ \1 3/ \2/ Z_PAGE
+.6 8:9 5.6 o RUNS

Number of passes PASS 42 \\/ \/ oy
=1+ [log, N] - 0

Total I/O cost
= 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

24

2-WAY EXTERNAL MERGE SORT

EOF
g|3,4|6,2|9,4|8,7|5,6|3,1|2Ifa
In each Pass) We read and Write PASS #0. | I I I I I I I | I_PAGE
in the fil e e e L
everv page in the file. S e s N S — — 7. RUNS
I'y pag PASS# T = = 5 2-PAGE
4,6 8,9 5,6 o RUNS
Number of passes
=1+ [log, N]
Total I/O cost
= 2N - (# of passes) j
)
£2CMU-DB -
15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

25

2-WAY EXTERNAL MERGE SORT

This algorithm only requires three buffer pool
pages to perform the sorting (B=3).
— Two input pages, one output page

But even if we have more buffer space available
(B>3), it does not effectively utilize them if the
worker must block on disk I/0O...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

26

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store
it in a second buffer while the system is processing

the current run.
— Reduces the wait time for I/O requests at each step by
continuously utilizing the disk.

Page #1 Page #2

Memory
Disk

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

26

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store
it in a second buffer while the system is processing

the current run.
— Reduces the wait time for I/O requests at each step by
continuously utilizing the disk.

Memory

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

26

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store
it in a second buffer while the system is processing

the current run.
— Reduces the wait time for I/O requests at each step by
continuously utilizing the disk.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

26

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store
it in a second buffer while the system is processing

the current run.
— Reduces the wait time for I/O requests at each step by
continuously utilizing the disk.

Disk

Page #1 Page #2

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

26

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store
it in a second buffer while the system is processing

the current run.
— Reduces the wait time for I/O requests at each step by
continuously utilizing the disk.

Disk .

Page #1 Page #2

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

26

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store
it in a second buffer while the system is processing

the current run.
— Reduces the wait time for I/O requests at each step by
continuously utilizing the disk.

Page #1 Page #2

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

GENERAL EXTERNAL MERGE SORT

Pass #0
— Use B buffer pages
— Produce [N/ B] sorted runs of size B

Pass #1,2,3,...

— Merge B-1runs (i.e., K-way merge)

Number of passes = 1+ [log,, [N/ B] |
Total I/O Cost = 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

GENERAL EXTERNAL MERGE SORT

Pass #0
— Use B buffer pages
— Produce [N/ B] sorted runs of size B

Pass #1,2,3,...

— Merge B-1runs (i.e., K-way merge)

Number of passes = 1+ [log,, [N/ B] |
Total I/O Cost = 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

GENERAL EXTERNAL MERGE SORT

Pass #0
— Use B buffer pages
— Produce [N/ B] sorted runs of size B

Pass #1,2,3,...

— Merge B-1runs (i.e., K-way merge)

Number of passes = 1+ [log,, [N/ B] |
Total I/O Cost = 2N - (# of passes)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Determine how many passes it takes to sort 108

pages with 5 buffer pool pages: N=108, B=5

— Pass #0: [N/ B] = [108 / 5] = 22 sorted runs of 5 pages each
(last run is only 3 pages).

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Determine how many passes it takes to sort 108

pages with 5 buffer pool pages: N=108, B=5

— Pass #0: [N/ B] = [108 / 5] = 22 sorted runs of 5 pages each
(last run is only 3 pages).

— Pass #1: [N’/ B-1] = [22 / 4] = 6 sorted runs of 20 pages each
(last run is only 8 pages).

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

28

EXAMPLE

Determine how many passes it takes to sort 108

pages with 5 buffer pool pages: N=108, B=5

— Pass #0: [N/ B] = [108 / 5] = 22 sorted runs of 5 pages each
(last run is only 3 pages).

— Pass #1: [N’/ B-1] = [22 / 4] = 6 sorted runs of 20 pages each
(last run is only 8 pages).

— Pass #2: [N”/ B-1] = [6 / 4] = 2 sorted runs, first one has 80
pages and second one has 28 pages.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

28

EXAMPLE

Determine how many passes it takes to sort 108

pages with 5 buffer pool pages: N=108, B=5

— Pass #0: [N/ B] = [108 / 5] = 22 sorted runs of 5 pages each
(last run is only 3 pages).

— Pass #1: [N’/ B-1] = [22 / 4] = 6 sorted runs of 20 pages each
(last run is only 8 pages).

— Pass #2: [N”/ B-1] = [6 / 4] = 2 sorted runs, first one has 80

pages and second one has 28 pages.
— Pass #3: Sorted file of 108 pages.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

28

EXAMPLE

Determine how many passes it takes to sort 108

pages with 5 buffer pool pages: N=108, B=5

— Pass #0: [N/ B] = [108 / 5] = 22 sorted runs of 5 pages each
(last run is only 3 pages).

— Pass #1: [N’/ B-1] = [22 / 4] = 6 sorted runs of 20 pages each
(last run is only 8 pages).

— Pass #2: [N”/ B-1] = [6 / 4] = 2 sorted runs, first one has 80

pages and second one has 28 pages.
— Pass #3: Sorted file of 108 pages.

1+[log, [N/ B] | = 1+[log, 22] = 1+[2.229...]

o oMUDs = 4 passes

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

USING B+TREES FOR SORTING

[f the table that must be sorted already has a
B+Tree index on the sort attribute(s), then we can
use that to accelerate sorting.

Retrieve tuples in desired sort order by simply
traversing the leaf pages of the tree.

Cases to consider:
— Clustered B+Tree
— Unclustered B+Tree

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

31

CASE #1 - CLUSTERED B+TREE

B+Tree Index
Traverse to the left-most leaf page, &
and then retrieve tuples from all leaf

pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

Tuple Pages

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CASE #1 - CLUSTERED B+TREE

Traverse to the left-most leaf page,
and then retrieve tuples from all leaf

pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

$CMU-DB

15-445/645 (Fall 2021)

B+Tree Index '

Tuple Pages

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

32

CASE #2 — UNCLUSTERED B+TREE

. B+Tree Index
Chase each pointer to the page that &
contains the data.

This is almost always a bad idea.
In general, one I/O per data record.

Tuple Pages

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CASE #2 — UNCLUSTERED B+TREE

B+Tree Index '

Chase each pointer to the page that
contains the data.

This is almost always a bad idea.
In general, one I/O per data record.

Tuple Pages

$CMU-DB

15-445/645 (Fall 2021)

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

AGGREGATIONS

Collapse values for a single attribute from multiple
tuples into a single scalar value.

Two implementation choices:
— Sorting
— Hashing

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTING AGGREGATION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 [15-721 |A
ORDER BY cid 53688 |15-826 |B
53666 |15-721 |C
53655 |15-445 |C

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTING AGGREGATION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 [15-721 |A
ORDER BY cid 53688 |15-826 |B
53666 |15-721 |C
53655 |15-445 |C

53666 |15-445|C

‘ 53688 |15-826

B

o 53666 15-721|C
Filter

53655 15-445|C

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTING AGGREGATION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 [15-721 |A
ORDER BY cid 53688 |15-826 |B
53666 |15-721 |C
53655 |15-445 |C

cid
53666 15-445|C

15-445
‘ 53688 |15-826 ‘ 15-826

B
o 53666 15-721|C 15-721
Filter 22— 2= 0 Remove [
Columns

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")
ORDER BY cid

)

Filter

£CMU-DB

15-445/645 (Fall 2021)

sid cid grade
53666 |15-445|C
53688 |15-826|B
53666 |[15-721|C
53655 |15-445|C

)

Remove
Columns

SORTING AGGREGATION

34

enrolled(sid,cid, grade)

cid
15-445

15-826

15-721

15-445

sid cid grade
53666 |[15-445 |C
53688 15-721 |A
53688 [15-826 (B
53666 |15-721 |C
53655 [15-445 |C
cid
15-445
‘ 15-445
15-721
SOTt 15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTING AGGREGATION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
ORDER BY Cld 53688 15-826 |B
53666 |15-721 |C
53655 [15-445 |C
sid cid grade cid cid
53666 |15-445|C 15-445 15-445 «
‘ 53688 [15-826|B ‘ 15-826 ‘ 15-445
. 53666 |15-721|C 15-721 15-721
Filter =~ P22 J15-T21€ Remove |55 Sort o5
Columns Eliminate
Duypes

£CMU-DB

15-445/645 (Fall 2021)

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SORTING AGGREGATION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C') 53688 [15-721 |
ORDER BY Cld 53688 15-826 |B
53666 |15-721 |C
53655 |15-445 |C
sid cid grade cid cid
53666 |15-445|C 15-445 15-445
‘ 53688 |15-826|B ‘ 15-826 ‘ 15965
. 53666 |15-721|C 15-721 15-721
Filter 53655 |15-445|C Remove 15-445 Sort 15-826 ‘
Columns Eliminate
Dupes

£CMU-DB

15-445/645 (Fall 2021)

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ALTERNATIVES TO SORTING

What if we do not need the data to be ordered?

— Forming groups in GROUP BY (no ordering)
— Removing duplicates in DISTINCT (no ordering)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

35

ALTERNATIVES TO SORTING

What if we do not need the data to be ordered?

— Forming groups in GROUP BY (no ordering)
— Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
— Only need to remove duplicates, no need for ordering.
— Can be computationally cheaper than sorting.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

36

HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS
scans the table. For each record, check whether

there is already an entry in the hash table:
— DISTINCT: Discard duplicate
— GROUP BY: Perform aggregate computation

[f everything fits in memory, then this is easy.

[f the DBMS must spill data to disk, then we need
to be smarter...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXTERNAL HASHING AGGREGATE

Phase #1 — Partition

— Divide tuples into buckets based on hash key
— Write them out to disk when they get full

Phase #2 - ReHash

— Build in-memory hash table for each partition and
compute the aggregation

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #1 — PARTITION

Use a hash function h;, to split tuples into

partitions on disk.

— A partition is one or more pages that contain the set of
keys with the same hash value.

— Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1
buffer for the input data.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #1 — PARTITION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
53666 [15-721 |C
53655 [15-445 |C

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #1 — PARTITION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
53666 [15-721 |C
53655 [15-445 |C

53666 [15-445|C

‘ 53688 |15-826

B
0 53666 [15-721|C
Fllter 53655 [15-445|C

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #1 — PARTITION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
53666 [15-721 |C
53655 [15-445 |C

cid
53666 |15-445|C 15-445

‘ 53688 |15-826 ‘ 15-826

B
. 53666 |[15-721]|C 15-721
Filter 53655 |15-445|C Remove 15-445
Columns

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #1 — PARTITION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 [15-445 |C
WHERE grade IN ('B','C') 53688 |15-721 |A
53688 [15-826 |B
53666 |15-721 |C
53655 [15-445 |C
B-1 partitions
U cid T
53666 |15-445|C 15-445 15-445 15-445
‘ 53688 |15-826 ‘ 15-826 TS-o

B
o 53666 [15-721|C 15-721
Filter . Remove [154ss

53655 15-445
Columns

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #1 — PARTITION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 [15-445 |C
WHERE grade IN ('B','C') 53688 |15-721 |A
53688 [15-826 |B
53666 |15-721 |C
53655 [15-445 |C
B-1 partitions
U cid T
53666 |15-445|C 15-445 15-445 15-445
‘ 53688 |15-826 ‘ 15-826 TS-o

B
o 53666 [15-721|C 15-721
Filter . Remove [154ss

53655 15-445
Columns

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #1 — PARTITION
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 [15-721 |A
53688 |15-826 |B
53666 |15-721 |C
53655 |15-445 |C

B-1 partitions
sid cid grade cid 15-445
53666 |15-445|C W

15-826
15-826

‘ 53688 |15-826 ‘ 15-826

B
. 53666 |[15-721]|C 15-721
Filter 53655 |15-445|C Remove 15-445
Columns

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH

For each partition on disk:

— Read it into memory and build an in-memory hash table
based on a second hash function h,.

— Then go through each bucket of this hash table to bring
together matching tuples.

This assumes that each partition fits in memory.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 — REHASH
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
53666 [15-721 |C
53655 [15-445 |C

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
Phase #1 Buckets 53666 [15-721 |C
53655 [15-445 |C

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C') 53688 |15-721 |A
53688 |15-826 |B
Phase #1 Buckets 53666 |15-721 |C
_ 53655 |15-445 |C
15-445 15-445
15-445 15-445
B-1 Eiﬁfffj
Partitions™

15-826
15-826

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C') 53688 |15-721 |A
53688 [15-826 |B
Phase #1 Buckets 53666 [15-721 |C
53655 [15-445 |C

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
Phase #1 Buckets 53666 |15-721 |C
C

Hash Table 53655 |15-445
» 15-445 15-445 |
15-445 15-445
15-445 15-445
15-445

15-826
15-826

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH
enrolled(sid,cid, grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C') 53688 [15-721 |A
53688 |15-826 |B
Phase #1 Buckets 53666 |15-721 |C
Hash Table 53655 [15-445 |C

15-445 15-445 |
15-445 15-445
15-445 15-445
15-445
15-826
» 15-826
15-826

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

Phase #1 Buckets

Hash Table

15-445 15-445 |-
15-445 15-445
15-445 15-445

15-445

15-826
15-826

15-826

£CMU-DB

15-445/645 (Fall 2021)

enrolled(sid,cid, grade)

sid cid grade

53666 [15-445 |C

53688 |15-721 |A

53688 [15-826 |B

53666 |15-721 |C

53655 [15-445 |C
Final Result

cid

15-445

15-826

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

Phase #1 Buckets

Hash Table

15-445 15-445 |-
15-445 15-445
15-445 15-445

15-445

15-826
15-826

15-826

15-721

£CMU-DB

15-445/645 (Fall 2021)

enrolled(sid,cid, grade)

sid cid grade

53666 [15-445 |C

53688 |15-721 |A

53688 [15-826 |B

53666 |15-721 |C

53655 [15-445 |C
Final Result

cid

15-445

15-826

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

Phase #1 Buckets

15-445 15-445
15-445 15-445

15-445 15-445

15-826

15-826

£CMU-DB

15-445/645 (Fall 2021)

» 15-721 @
15-721

Hash Table

enrolled(sid,cid, grade)

sid cid grade

53666 [15-445 |C

53688 |15-721 |A

53688 [15-826 |B

53666 |15-721 |C

53655 [15-445 |C
Final Result

cid

15-445

15-826

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PHASE #2 - REHASH

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

Phase #1 Buckets

15-445 15-445
15-445 15-445

15-445 15-445

15-826

15-826

£CMU-DB

15-445/645 (Fall 2021)

» 15-721 @
15-721

enrolled(sid,cid, grade)

sid cid grade
53666 |15-445 |C
53688 |15-721 |A
53688 |15-826 |B
53666 |15-721 |C
53655 |15-445 |C
Final Result
Hash Table cid
15-445
15-826

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASHING SUMMARIZATION

During the ReHash phase, store pairs of the form
(GroupKey»RunningVal)

When we want to insert a new tuple into the hash

table:

— If we find a matching GroupKey, just update the
RunningVal appropriately

— Else insert a new GroupKey®RunningVal

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

43

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445

15-445
Phase #1 | 15-826
Buckets

15-721

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

43

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445

15-445
Phase #1 | =82 »
Buckets

15—7;1 ‘ »

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445 @ »

L= Hash Table
Phase #1 | [12-826 @ » key value
. 15-445|(2, 7.32)

15-826|(1, 3.33)

15-721 . » 15-721[(1, 2.89)

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445 @

(B - Hash Table
Phase 41 | [127828 @ D
Buckets] 15-445|(2, 7.32)

15-826|(1, 3.33)

15-721 . » 15-721|(1, 2.89)

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid
GROUP BY cid

= e.sid

»

»

»

15-445

15-445
Phase #1 | 15-826
Buckets

15-721

£CMU-DB

15-445/645 (Fall 2021)

Hash Table

key
15-445

value
(2, 7.32)

Running Totals
AVG(col) = (COUNT,SUM)
MIN(col) =» (MIN)
MAX(col) » (MAX)
SUM(col) =» (SUM)
COUNT(col) » (COUNT)

15-826

(1, 3.33)

15-721

(1, 2.89)

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

HASHING SUMMARIZATION

Running Totals
SELECT cid, AVG(s.gpa) AVG(col) > (COUNT,SUM)
FROM student AS s, enrolled AS e MIN(col) » (MIN)
WHERE s.sid = e.sid MAX(col) » (MAX)
GROUP BY cid SUM(col) » (SuM)

COUNT(col) » (COUNT)

15-445
15-445 » Hash Table Final Result

15-826 key value cid AVG(gpa)
Phase #1
Buckets | 15-445|(2, 7.32) » 15-445 |3.66

15-826|(1, 3.33) 15-826 |(3.33

1577 . » 15-721](1, 2.89) 15-721 |2.89

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONCLUSION

Choice of sorting vs. hashing is subtle and depends
on optimizations done in each case.

We already discussed the optimizations for
sorting;:

— Chunk I/O into large blocks to amortize costs
— Double-buffering to overlap CPU and I/O

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NEXT CLASS

Nested Loop Join
Sort-Merge Join
Hash Join

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

