
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
http://cs.brown.edu/people/acrotty/
http://cs.brown.edu/people/acrotty/

15-445/645 (Fall 2021)

Homework #2 is due Sunday, Oct 3rd @ 11:59pm

Project #2 is due Sunday, Oct 17th @ 11:59pm
→ Q&A Session on Thursday, Sept 30th from 5-6pm
→ See the Piazza post for details

Mid-Term Exam is Wednesday, Oct 13th

→ During regular class time from 3:05-4:25pm
→ More details next week…

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:
→ Threads trying to modify the contents of a node at the

same time.
→ One thread traversing the tree while another thread

splits/merges nodes.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

What was the first step that all the update
examples did on the B+Tree?

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

4

20
W

Delete 38

20
W

Insert 45

20
W

Insert 25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Most modifications to a B+Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

If you guess wrong, repeat traversal
with the pessimistic algorithm.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://link.springer.com/article/10.1007/BF00263762

15-445/645 (Fall 2021)

Search: Same as before.

Insert/Delete:
→ Set latches as if for search, get to leaf, and set W latch on

leaf.
→ If leaf is not safe, release all latches, and restart thread

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

R

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

W

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

W

H will not need to coalesce, so
we’re safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

W

H will not need to coalesce, so
we’re safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

7

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

H will not need to coalesce, so
we’re safe!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38 41

8

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

3510

W

We need to split F, so we
have to restart and re-

execute like before.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The threads in all the examples so far have
acquired latches in a “top-down” manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait

until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

3

1 2 3 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

3

1 2 3 4

T1: Find Keys < 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

3

1 2 3 4

T1: Find Keys < 4
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

3

1 2 3 4

T1: Find Keys < 4

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

3

1 2 3 4

T1: Find Keys < 4

R

Do not release latch on C
until thread has latch on B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

3

1 2 3 4

T1: Find Keys < 4

R R

Do not release latch on C
until thread has latch on B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

10

3

1 2 3 4

T1: Find Keys < 4

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1
R

R R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1

R R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1

R R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1

R R

Both T1 and T2 now hold
this read latch.

Both T1 and T2 now hold
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1

R R

Both T1 and T2 now hold
this read latch.

Both T1 and T2 now hold
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

11

3

1 2 3 4

T1: Find Keys < 4

T2: Find Keys > 1

R R

Only T1 holds
this read latch.

Only T2 holds
this read latch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We are now going to talk about how
to execute queries using the DBMS
components we have discussed so far.

Next four lectures:
→ Operator Algorithms
→ Query Processing Models
→ Runtime Architectures

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We are now going to talk about how
to execute queries using the DBMS
components we have discussed so far.

Next four lectures:
→ Operator Algorithms
→ Query Processing Models
→ Runtime Architectures

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.

The output of the root node is the
result of the query.

15

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Just like it cannot assume that a table fits entirely
in memory, a disk-oriented DBMS cannot assume
that query results fit in memory.

We are going to rely on the buffer pool to
implement algorithms that need to spill to disk.

We are also going to prefer algorithms that
maximize the amount of sequential I/O.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

External Merge Sort

Aggregations

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Relational model/SQL is unsorted.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a
specific way (ORDER BY).

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a
specific way (ORDER BY).

But even if a query does not specify an order, we
may still want to sort to do other things:
→ Trivial to support duplicate elimination (DISTINCT)
→ Bulk loading sorted tuples into a B+Tree index is faster
→ Aggregations (GROUP BY)
→ …

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

If data fits in memory, then we can use a standard
sorting algorithm like quicksort.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

If data fits in memory, then we can use a standard
sorting algorithm like quicksort.

If data does not fit in memory, then we need to use
a technique that is aware of the cost of reading and
writing disk pages…

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Divide-and-conquer algorithm that splits data into
separate runs, sorts them individually, and then
combines them into longer sorted runs.

Phase #1 – Sorting
→ Sort chunks of data that fit in memory and then write

back the sorted chunks to a file on disk.

Phase #2 – Merging
→ Combine sorted runs into larger chunks.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

21

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

21

Late Materialization

• • •K1 ¤ K2 ¤ ¤Kn

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

21

Late Materialization

• • •K1 ¤ K2 ¤ ¤Kn

Record ID

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We will start with a simple example of a 2-way
external merge sort.
→ “2” is the number of runs that we are going to merge into

a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool
pages to hold input and output data.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

23

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

23

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

23

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

23

Memory

Disk
Page #1 Page #2

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

23

Memory

Disk
Page #1 Page #2

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

23

Memory Memory

Disk
Page #1 Page #2

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

23

Memory Memory

Disk
Page #1 Page #2

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long

23

Memory Memory

Disk
Page #1 Page #2

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Uses three buffer pages (2 for input pages, 1 for output)

23

Memory Memory

Disk
Page #1 Page #2

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Uses three buffer pages (2 for input pages, 1 for output)

23

Memory Memory Memory

Disk
Page #1 Page #2

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Uses three buffer pages (2 for input pages, 1 for output)

23

Memory Memory Memory

Disk
Page #1 Page #2

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Uses three buffer pages (2 for input pages, 1 for output)

23

Memory Memory Memory

Disk
Page #1 Page #2

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Uses three buffer pages (2 for input pages, 1 for output)

23

Memory Memory Memory

Disk
Page #1 Page #2

Final Result

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0
3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0

2-PAGE
RUNS

PASS #1

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0

2-PAGE
RUNS

PASS #1

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0

2-PAGE
RUNS

PASS #1

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0

2-PAGE
RUNS

PASS #1

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

2,3

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0

2-PAGE
RUNS

PASS #1

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

2,3

4,6

4,7

8,9

1,3

5,6

2

∅

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0

2-PAGE
RUNS

PASS #1

4-PAGE
RUNS

PASS #2

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

2,3

4,6

4,7

8,9

1,3

5,6

2

∅

4,4

6,7

8,9

2,3 1,2

3,5

6

∅

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

24

1-PAGE
RUNS

PASS #0

2-PAGE
RUNS

PASS #1

4-PAGE
RUNS

PASS #2

8-PAGE
RUNS

PASS #3

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

2,3

4,6

4,7

8,9

1,3

5,6

2

∅

4,4

6,7

8,9

2,3 1,2

3,5

6

∅

1,2

2,3

3,4

4,5

6,6

7,8

9

∅

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

This algorithm only requires three buffer pool
pages to perform the sorting (B=3).
→ Two input pages, one output page

But even if we have more buffer space available
(B>3), it does not effectively utilize them if the
worker must block on disk I/O…

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Prefetch the next run in the background and store
it in a second buffer while the system is processing
the current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

26

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Prefetch the next run in the background and store
it in a second buffer while the system is processing
the current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

26

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Prefetch the next run in the background and store
it in a second buffer while the system is processing
the current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

26

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Prefetch the next run in the background and store
it in a second buffer while the system is processing
the current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

26

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Prefetch the next run in the background and store
it in a second buffer while the system is processing
the current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

26

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Prefetch the next run in the background and store
it in a second buffer while the system is processing
the current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

26

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Use B buffer pages
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., K-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Use B buffer pages
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., K-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Pass #0
→ Use B buffer pages
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., K-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each

(last run is only 3 pages).

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each

(last run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each

(last run is only 8 pages).

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each

(last run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each

(last run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 80

pages and second one has 28 pages.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each

(last run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each

(last run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 80

pages and second one has 28 pages.
→ Pass #3: Sorted file of 108 pages.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each

(last run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each

(last run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 80

pages and second one has 28 pages.
→ Pass #3: Sorted file of 108 pages.

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉
= 4 passes

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

If the table that must be sorted already has a
B+Tree index on the sort attribute(s), then we can
use that to accelerate sorting.

Retrieve tuples in desired sort order by simply
traversing the leaf pages of the tree.

Cases to consider:
→ Clustered B+Tree
→ Unclustered B+Tree

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Traverse to the left-most leaf page,
and then retrieve tuples from all leaf
pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

31

B+Tree Index

101 102 103 104

Tuple Pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Traverse to the left-most leaf page,
and then retrieve tuples from all leaf
pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

31

B+Tree Index

101 102 103 104

Tuple Pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Chase each pointer to the page that
contains the data.

This is almost always a bad idea.
In general, one I/O per data record.

32

101 102 103 104

Tuple Pages

B+Tree Index

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Chase each pointer to the page that
contains the data.

This is almost always a bad idea.
In general, one I/O per data record.

32

101 102 103 104

Tuple Pages

B+Tree Index

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Collapse values for a single attribute from multiple
tuples into a single scalar value.

Two implementation choices:
→ Sorting
→ Hashing

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

34

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

34

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

34

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

cid

15-445
15-445
15-721
15-826

34

Remove
Columns

SortFilter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

cid

15-445
15-445
15-721
15-826

34

Remove
Columns

Sort
Eliminate

Dupes

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

cid

15-445
15-445
15-721
15-826

34

Remove
Columns

Sort
Eliminate

Dupes

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

What if we do not need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

What if we do not need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
→ Only need to remove duplicates, no need for ordering.
→ Can be computationally cheaper than sorting.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Populate an ephemeral hash table as the DBMS
scans the table. For each record, check whether
there is already an entry in the hash table:
→ DISTINCT: Discard duplicate
→ GROUP BY: Perform aggregate computation

If everything fits in memory, then this is easy.

If the DBMS must spill data to disk, then we need
to be smarter…

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Phase #1 – Partition
→ Divide tuples into buckets based on hash key
→ Write them out to disk when they get full

Phase #2 – ReHash
→ Build in-memory hash table for each partition and

compute the aggregation

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Use a hash function h1 to split tuples into
partitions on disk.
→ A partition is one or more pages that contain the set of

keys with the same hash value.
→ Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1
buffer for the input data.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

39

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

39

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

39

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

39

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

15-721

⋮

h1

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

39

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

15-721

⋮

h1

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

39

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

15-721

⋮

h1

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

⋮

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

For each partition on disk:
→ Read it into memory and build an in-memory hash table

based on a second hash function h2.
→ Then go through each bucket of this hash table to bring

together matching tuples.

This assumes that each partition fits in memory.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

B-1
Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

15-445

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

h2

Phase #1 Buckets

15-445

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

h2

Phase #1 Buckets

15-445

cid

15-445
15-826

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result
15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

h2

Phase #1 Buckets

15-445

cid

15-445
15-826

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result
15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

h2

h2

Phase #1 Buckets

cid

15-445
15-826

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result

15-721

Hash Table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

41

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

h2

h2

Phase #1 Buckets

cid

15-445
15-826

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result

15-721

Hash Table

15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

During the ReHash phase, store pairs of the form
(GroupKey→RunningVal)

When we want to insert a new tuple into the hash
table:
→ If we find a matching GroupKey, just update the

RunningVal appropriately
→ Else insert a new GroupKey→RunningVal

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

43

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

Phase #1
Buckets

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

43

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

43

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

43

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

43

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

AVG(col) → (COUNT,SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

43

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table
cid AVG(gpa)

15-445 3.66

15-826 3.33

15-721 2.89

Final Result

AVG(col) → (COUNT,SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Choice of sorting vs. hashing is subtle and depends
on optimizations done in each case.

We already discussed the optimizations for
sorting:
→ Chunk I/O into large blocks to amortize costs
→ Double-buffering to overlap CPU and I/O

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Nested Loop Join

Sort-Merge Join

Hash Join

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

